Versatile mysids exploit multiple basal resources: implication of the bentho-pelagic habit in estuarine food webs

Hydrobiologia ◽  
2014 ◽  
Vol 743 (1) ◽  
pp. 37-51 ◽  
Author(s):  
T. Ramarn ◽  
V. C. Chong ◽  
Y. Hanamura
Keyword(s):  
2011 ◽  
Vol 56 (3) ◽  
pp. 841-856 ◽  
Author(s):  
Mark A. Grippo ◽  
John W. Fleeger ◽  
Stanislas F. Dubois ◽  
Richard Condrey

2017 ◽  
Vol 284 (1851) ◽  
pp. 20162590 ◽  
Author(s):  
Geoffrey C. Trussell ◽  
Catherine M. Matassa ◽  
Patrick J. Ewanchuk

In simple, linear food chains, top predators can have positive indirect effects on basal resources by causing changes in the traits (e.g. behaviour, feeding rates) of intermediate consumers. Although less is known about trait-mediated indirect interactions (TMIIs) in more complex food webs, it has been suggested that such complexity dampens trophic cascades. We examined TMIIs between a predatory crab ( Carcinus maenas ) and two ecologically important basal resources, fucoid algae ( Ascophyllum nodosum ) and barnacles ( Semibalanus balanoides ), which are consumed by herbivorous ( Littorina littorea ) and carnivorous ( Nucella lapillus ) snails, respectively. Because crab predation risk suppresses snail feeding rates, we hypothesized that crabs would also shape direct and indirect interactions among the multiple consumers and resources. We found that the magnitude of TMIIs between the crab and each resource depended on the suite of intermediate consumers present in the food web. Carnivorous snails ( Nucella ) transmitted TMIIs between crabs and barnacles. However, crab–algae TMIIs were transmitted by both herbivorous ( Littorina ) and carnivorous ( Nucella ) snails, and these TMIIs were additive. By causing Nucella to consume fewer barnacles, crab predation risk allowed fucoids that had settled on or between barnacles to remain in the community. Hence, positive interactions between barnacles and algae caused crab–algae TMIIs to be strongest when both consumers were present. Studies of TMIIs in more realistic, reticulate food webs will be necessary for a more complete understanding of how predation risk shapes community dynamics.


Author(s):  
Fen Guo ◽  
Nadine Ebm ◽  
Brian Fry ◽  
Stuart E. Bunn ◽  
Michael T. Brett ◽  
...  

2017 ◽  
Vol 68 (3) ◽  
pp. 549 ◽  
Author(s):  
Robyn L. Paice ◽  
Jane M. Chambers ◽  
Belinda J. Robson

Submerged plants are often abundant in lowland streams in agricultural landscapes, but little is known of their role in stream ecosystems compared to riparian vegetation. We investigated the importance of submerged macrophytes as a basal resource of food webs in stream reaches with good and poor riparian vegetation condition, using mixing model analysis with stable carbon and nitrogen isotopes. Epilithic periphyton and terrestrial detritus were important basal resources in good condition reaches, although where macrophytes were present they contributed to food webs. Higher assimilation of either the macrophyte Cycnogeton huegelii or conspicuous epiphytes on C. huegelii leaves was associated with poor riparian condition. Where Potamogeton ochreatus and Ottelia ovalifolia occurred in poor condition reaches, these macrophytes contributed moderately to the food web, but were probably of greater importance as substrates for epiphytic algae. Mixing models indicated invertebrates commonly had generalist feeding strategies, feeding on the most available resource at each reach. Thus, where riparian vegetation is limited, submerged macrophytes may support opportunistic consumers both directly and as a substrate for epiphytes, thereby partially compensating for the loss of allochthonous resources in lowland agricultural streams.


2020 ◽  
Vol 18 (3) ◽  
Author(s):  
Marina Tagliaferro ◽  
Sean P. Kelly ◽  
Miguel Pascual

Abstract The aim of this study was to determine the food webs structure of a large Patagonian river in two river sections (Upstream and Midstream) and to evaluate isotopic overlap between native and introduced species. We used stable isotope analyses of δ15N and δ13C and stomach content. The Upstream section had a more complex food webs structure with a greater richness of macroinvertebrates and fish species than Midstream. Upstream basal resources were dominated by filamentous algae. Lake Trout were found to have a higher trophic position than all other fish species in that area although, the most abundant fish species, were Rainbow Trout. Depending on the life stage, Rainbow Trout shifted from prey to competitor/predator. In the Midstream section, the base of the food webs was dominated by coarse particulate organic matter, and adult Rainbow Trout had the highest trophic level. Isotopic values changed among macroinvertebrates and fish for both areas. The two most abundant native and invasive species — Puyen and Rainbow Trout — showed an isotopic separation in Midstream but did not in Upstream areas. The presence of invasive fish that occupy top trophic levels can have a significant impact on native fish populations that have great ecological importance in the region.


2019 ◽  
Vol 613 ◽  
pp. 49-66 ◽  
Author(s):  
VN de Jonge ◽  
U Schückel ◽  
D Baird
Keyword(s):  

2015 ◽  
Vol 6 (3) ◽  
pp. 167
Author(s):  
Hyun-Seon Shin ◽  
Amahashi Nozomi ◽  
Young-Eun Na ◽  
Hong-Hyun Park ◽  
Kwang-Jin Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document