Antihydrogen atom formation in a CUSP trap towards spin polarized beams

2012 ◽  
Vol 212 (1-3) ◽  
pp. 31-40
Author(s):  
N. Kuroda ◽  
Y. Enomoto ◽  
K. Michishio ◽  
C. H. Kim ◽  
H. Higaki ◽  
...  
LEAP 2011 ◽  
2012 ◽  
pp. 31-40
Author(s):  
N. Kuroda ◽  
Y. Enomoto ◽  
K. Michishio ◽  
C. H. Kim ◽  
H. Higaki ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 398
Author(s):  
Yaroslav S. Derbenev ◽  
Yury N. Filatov ◽  
Anatoliy M. Kondratenko ◽  
Mikhail A. Kondratenko ◽  
Vasiliy S. Morozov

We present a review of the possibilities to conduct experiments of high efficiency in the nuclear and high energy physics with spin-polarized beams in a collider complex, configuration of which includes Siberian snakes or figure-8 collider ring. Special attention is given to the recently elicited advantageous possibility to conduct high precision experiments in a regime of the spin transparency (ST) when the design global spin tune is close to zero. In this regime, the polarization control is realized by use of spin navigators (SN), which are compact special insertions of magnets dedicated to a high flexibility spin manipulation including frequent spin flips.


1990 ◽  
Vol 61 (1) ◽  
pp. 385-388 ◽  
Author(s):  
Thomas B. Clegg

2016 ◽  
Vol 40 ◽  
pp. 1660064
Author(s):  
A. Thomas

The spin, as a fundamental property of a particle, has been a main object of investigation in particle and nuclear physics research in recent decades. For complete spin investigation, one requires a polarized target in addition to polarized beams and a recoil polarimeter. The advent of advanced beam and large acceptance detector technologies has driven the development of highly polarized, full angular acceptance targets. The Crystal Ball detector with its unique capability to cope with multi photon final states is used in Mainz at the A2 real photon facility in combination with a frozen spin polarized target. Technical highlights from the development of thin superconducting magnets to provide a longitudinal and transverse polarization are presented. A continuous polarization in the ‘DNP’-mode is on the way. Another promising technology investigation is going in the direction of ‘Active Polarized Targets’ to use the target as an intrinsic part of the detector. This requires from the scintillating material and front-end electronics to operate at cryogenic temperatures.


Author(s):  
Kazuyuki Koike ◽  
Hideo Matsuyama

Spin-polarized scanning electron microscopy (spin SEM), where the secondary electron spin polarization is used as the image signal, is a novel technique for magnetic domain observation. Since its first development by Koike and Hayakawa in 1984, several laboratories have extensively studied this technique and have greatly improved its capability for data extraction and its range of applications. This paper reviews the progress over the last few years.Almost all the high expectations initially held for spin SEM have been realized. A spatial resolution of several hundreds angstroms has been attained, which is nearly one order of magnitude higher than that of conventional methods for thick samples. Quantitative analysis of magnetization direction has been performed more easily than with conventional methods. Domain observation of the surface of three-dimensional samples has been confirmed to be possible. One of the drawbacks, a long image acquisition time, has been eased by combining highspeed image-signal processing with high speed scanning, although at the cost of image quality. By using spin SEM, the magnetic structure of a 180 degrees surface Neel wall, magnetic thin films, multilayered films, magnetic discs, etc., have been investigated.


2001 ◽  
Vol 11 (PR11) ◽  
pp. Pr11-53-Pr11-57
Author(s):  
B. Vengalis ◽  
V. Plausinaitiene ◽  
A. Abrutis ◽  
Z. Saltyte ◽  
R. Butkute ◽  
...  

1971 ◽  
Vol 32 (C1) ◽  
pp. C1-932-C1-933 ◽  
Author(s):  
H. W. LEHMANN ◽  
G. HARBEKE ◽  
H. PINCH

Sign in / Sign up

Export Citation Format

Share Document