Spin-polarized Scanning Electron Microscopy

Author(s):  
Kazuyuki Koike ◽  
Hideo Matsuyama

Spin-polarized scanning electron microscopy (spin SEM), where the secondary electron spin polarization is used as the image signal, is a novel technique for magnetic domain observation. Since its first development by Koike and Hayakawa in 1984, several laboratories have extensively studied this technique and have greatly improved its capability for data extraction and its range of applications. This paper reviews the progress over the last few years.Almost all the high expectations initially held for spin SEM have been realized. A spatial resolution of several hundreds angstroms has been attained, which is nearly one order of magnitude higher than that of conventional methods for thick samples. Quantitative analysis of magnetization direction has been performed more easily than with conventional methods. Domain observation of the surface of three-dimensional samples has been confirmed to be possible. One of the drawbacks, a long image acquisition time, has been eased by combining highspeed image-signal processing with high speed scanning, although at the cost of image quality. By using spin SEM, the magnetic structure of a 180 degrees surface Neel wall, magnetic thin films, multilayered films, magnetic discs, etc., have been investigated.

Author(s):  
M. T. Postek ◽  
A. E. Vladar

One of the major advancements applied to scanning electron microscopy (SEM) during the past 10 years has been the development and application of digital imaging technology. Advancements in technology, notably the availability of less expensive, high-density memory chips and the development of high speed analog-to-digital converters, mass storage and high performance central processing units have fostered this revolution. Today, most modern SEM instruments have digital electronics as a standard feature. These instruments, generally have 8 bit or 256 gray levels with, at least, 512 × 512 pixel density operating at TV rate. In addition, current slow-scan commercial frame-grabber cards, directly applicable to the SEM, can have upwards of 12-14 bit lateral resolution permitting image acquisition at 4096 × 4096 resolution or greater. The two major categories of SEM systems to which digital technology have been applied are:In the analog SEM system the scan generator is normally operated in an analog manner and the image is displayed in an analog or "slow scan" mode.


2014 ◽  
Vol 971-973 ◽  
pp. 802-805
Author(s):  
Wei Feng Zhang ◽  
Li Yan ◽  
Fu Xia Zhang

For the problem of high-speed rotating centrifuge spindle fracture failures, relevant analyses are conducted from the perspective of microstructure, chemical composition and fracture mechanics by using scanning electron microscopy and related instruments. Experimental results and analyses indicate that the spindle fracture is fatigue failure, mainly caused by cold cracks generated on the journal surfacing. Based on the analysis results, improvements and measures are suggested to better solve the spindle weld fracture failure problems.


2020 ◽  
Vol 26 (3) ◽  
pp. 403-412 ◽  
Author(s):  
Pavel Potocek ◽  
Patrick Trampert ◽  
Maurice Peemen ◽  
Remco Schoenmakers ◽  
Tim Dahmen

AbstractWith the growing importance of three-dimensional and very large field of view imaging, acquisition time becomes a serious bottleneck. Additionally, dose reduction is of importance when imaging material like biological tissue that is sensitive to electron radiation. Random sparse scanning can be used in the combination with image reconstruction techniques to reduce the acquisition time or electron dose in scanning electron microscopy. In this study, we demonstrate a workflow that includes data acquisition on a scanning electron microscope, followed by a sparse image reconstruction based on compressive sensing or alternatively using neural networks. Neuron structures are automatically segmented from the reconstructed images using deep learning techniques. We show that the average dwell time per pixel can be reduced by a factor of 2–3, thereby providing a real-life confirmation of previous results on simulated data in one of the key segmentation applications in connectomics and thus demonstrating the feasibility and benefit of random sparse scanning techniques for a specific real-world scenario.


1987 ◽  
Vol 61 (8) ◽  
pp. 4307-4307 ◽  
Author(s):  
J. Unguris ◽  
G. G. Hembree ◽  
R. J. Celotta ◽  
D. T. Pierce

Sign in / Sign up

Export Citation Format

Share Document