The Ideal Gas and Real Gas Heat Capacity of Sodium Atoms

2013 ◽  
Vol 35 (9-10) ◽  
pp. 1785-1802 ◽  
Author(s):  
Louis Biolsi
2007 ◽  
Vol 21 (06) ◽  
pp. 947-953 ◽  
Author(s):  
YAHUI ZHENG ◽  
JIULIN DU

By application of the nonextensive statistics to the ideal gas model, we establish a nonextensive gas model. If we regard the nonextensive gas as a real gas, we can use the nonextensive parameter q ∈ ℝ in Tsallis statistics to describe Joule coefficient, Joule–Thomson coefficient, second virial coefficient and etc. We also derive an expression, with a multiplier T1-q, of the heat capacity of the nonextensive gas. We can prove that in the quasi-equilibrium system there is 1 - q > 0, 2 so the heat capacity still vanishes if temperature tends to zero, just as that in Boltzmann-Gibbs statistics.


1994 ◽  
Vol 269 ◽  
pp. 283-299 ◽  
Author(s):  
Wayland C. Griffith ◽  
William J. Yanta ◽  
William C. Ragsdale

Recent experimental observation of supercooling in large hypersonic wind tunnels using pure nitrogen identified a broad range of non-equilibrium metastable vapour states of the flow in the test cell. To investigate this phenomenon a number of real-gas effects are analysed and compared with predictions made using the ideal-gas equation of state and equilibrium thermodynamics. The observed limit on the extent of supercooling is found to be at 60% of the temperature difference from the sublimation line to Gibbs’ absolute limit on phase stability. The mass fraction then condensing is calculated to be 12–14%. Included in the study are virial effects, quantization of rotational and vibrational energy, and the possible role of vibrational relaxation and freezing in supercooling. Results suggest that use of the supercooled region to enlarge the Mach–Reynolds number test envelope may be practical. Data from model tests in supercooled flows support this possibility.


1977 ◽  
Vol 99 (1) ◽  
pp. 217-225 ◽  
Author(s):  
P. A. Thompson ◽  
D. A. Sullivan

The steady isentropic flow of a fluid which satisfies an arbitrary equation of state is treated, with emphasis on the prediction of pressure, density, velocity, and massflow at the sonic state. The isentrope P(v) is described by a limited number of thermodynamic parameters, the most important ones being the soundspeed c and fundamental derivative Γ. Using this description, an application of the Bernoulli equation and appropriate thermodynamic relations yields simple closed-form predictions for the sonic state. These predictions are recognizable as generalizations of well-known ideal gas formulas, but are applicable to fluids very far removed from the ideal gas state, even including liquids. Comparisons in several cases for which precise independent solutions are available suggest that the methods found here are accurate. A derived similarity principle allows the accurate prediction of sonic properties from any single given sonic property.


Author(s):  
Jiangnan Zhang ◽  
Pedro Gomes ◽  
Mehrdad Zangeneh ◽  
Benjamin Choo

It is found that the ideal gas assumption is not proper for the design of turbomachinery blades using supercritical CO2 (S-CO2) as working fluid especially near the critical point. Therefore, the inverse design method which has been successfully applied to the ideal gas is extended to applications for the real gas by using a real gas property lookup table. A fast interpolation lookup approach is implemented which can be applied both in superheated and two-phase regimes. This method is applied to the design of a centrifugal compressor blade and a radial-inflow turbine blade for a S-CO2 recompression Brayton cycle. The stage aerodynamic performance (volute included) of the compressor and turbine is validated numerically by using the commercial CFD code ANSYS CFX R162. The structural integrity of the designs is also confirmed by using ANSYS Workbench Mechanical R162.


1997 ◽  
Vol 62 (5) ◽  
pp. 679-695
Author(s):  
Josef P. Novák ◽  
Anatol Malijevský ◽  
Jaroslav Dědek ◽  
Jiří Oldřich

It was proved that the enthalpy of saturated vapour as a function of temperature has a maximum for all substances. The dependence of the entropy of saturated vapour on temperature can be monotonous, has a minimum and a maximum, or has only a maximum. The thermodynamic relations were derived for the existence of the extremes which enable their computation from the knowledge of dependence of the ideal-gas heat capacity on temperature and an equation of state. A method based on the theorem of corresponding states was proposed for estimating the extremes, and its results were compared with literature data. The agreement between the literature and estimated temperatures corresponding to the extremes is very good. The procedure proposed can serve for giving precision to the H-p and T-S diagrams commonly used in applied thermodynamics.


Sign in / Sign up

Export Citation Format

Share Document