scholarly journals Design of a Centrifugal Compressor Stage and a Radial-Inflow Turbine Stage for a Supercritical CO2 Recompression Brayton Cycle by Using 3D Inverse Design Method

Author(s):  
Jiangnan Zhang ◽  
Pedro Gomes ◽  
Mehrdad Zangeneh ◽  
Benjamin Choo

It is found that the ideal gas assumption is not proper for the design of turbomachinery blades using supercritical CO2 (S-CO2) as working fluid especially near the critical point. Therefore, the inverse design method which has been successfully applied to the ideal gas is extended to applications for the real gas by using a real gas property lookup table. A fast interpolation lookup approach is implemented which can be applied both in superheated and two-phase regimes. This method is applied to the design of a centrifugal compressor blade and a radial-inflow turbine blade for a S-CO2 recompression Brayton cycle. The stage aerodynamic performance (volute included) of the compressor and turbine is validated numerically by using the commercial CFD code ANSYS CFX R162. The structural integrity of the designs is also confirmed by using ANSYS Workbench Mechanical R162.


Author(s):  
M. Schleer ◽  
S. S. Hong ◽  
M. Zangeneh ◽  
C. Roduner ◽  
B. Ribi ◽  
...  

This paper presents an experimental investigation of two centrifugal compressor stage configurations. The baseline configuration has been designed using conventional design engineering tools. The second configuration was designed using advanced inverse design rules as described in part 1 (Zangeneh et al. 2003). It is designed to match the choke flow as well as the best point of the conventionally designed stage. The experimental investigation is conducted in the industry-scale centrifugal compressor facility at the Turbomachinery Laboratory of the Swiss Federal Institute of Technology. Performance maps for both configurations at several speed-lines are presented. These plots show the overall behavior of the stages designed using the different design approaches and their operating range. Time resolved measurements show details of the unsteady flow field within the diffuser close to the impeller exit. The time resolved data has been analyzed to assist the explanation of changes in the characteristics and associated efficiency penalties and gains. The processed data shows the benefits of the new inverse design method with respect to an improvement of the compressor efficiency and the operating range. It is seen that the application of an inverse design method results in a more uniform flow into the diffuser.



Author(s):  
Mahdi Nili-Ahmadabadi ◽  
Farzad Poursadegh ◽  
Majid R. Shahhosseini

This paper is concerned with performance improvement of a centrifugal compressor by evolution of an inverse design method for 3D design approaches. The design procedure encompasses two major steps. Firstly, using the BSA inverse design algorithm on the meridional plane of the impellers, the meridional geometries for impellers are defined based on modified pressure distribution. Furthermore, an original and progressive algorithm is developed for 3D design of angular coordinates of the impellers on the blade to blade planes of them based on blades loading improvements. Full 3D analysis of the designed compressor using Reynolds Average Navier-Stokes equations, and its comparison with the analysis results of the current compressor, shows that the total pressure ratio of the designed compressor at the same operation condition is enhanced more than 5 percent.





Author(s):  
Jekyoung Lee ◽  
Jeong Ik Lee ◽  
Yoonhan Ahn ◽  
Hojoon Yoon

The supercritical CO2(S-CO2) Brayton Cycle is gaining attention due to its high thermal efficiency at relatively low turbine inlet temperature and compactness of turbomachineries. For designing turbomachineries of the S-CO2 Cycle, however, most of existing codes based on ideal gas assumption are not proven yet to be accurate near the supercritical condition. Furthermore, many of existing design computer programs usually focuses on a specific type of turbomachinery, e.g. axial or radial, which makes hard to compare performance of both types at the same design condition. Since both axial and radial types of turbomachineries were pointed out as an equally possible candidate for the S-CO2 Brayton cycle, in order to compare and determine the best effective type of turbomachinery requires considering both types under the same design conditions. Taking into consideration of these facts, some modifications to the conventional design methodology of gas cycle turbomachinery are necessary to design a turbomachinery for the S-CO2 cycle. Especially, a modified design method should consider non-linear property variation of CO2 near the critical point to obtain an accurate result. Thus, the modified design method for the S-CO2 Brayton cycle turbomachineries is suggested in this paper and the method was implemented in the in-house code. In addition, some preliminary results will be discussed with the plan for validation and verification of the code.



2004 ◽  
Vol 126 (1) ◽  
pp. 82-90 ◽  
Author(s):  
M. Schleer ◽  
S. S. Hong ◽  
M. Zangeneh ◽  
C. Roduner ◽  
B. Ribi ◽  
...  

This paper presents an experimental investigation of two centrifugal compressor stage configurations. The baseline configuration has been designed using conventional design engineering tools. The second configuration was designed using advanced inverse design rules as described in Part I. It is designed to match the choke flow as well as the best point of the conventionally designed stage. The experimental investigation is conducted in the industry-scale centrifugal compressor facility at the Turbomachinery Laboratory of the Swiss Federal Institute of Technology. Performance maps for both configurations at several speed lines are presented. These plots show the overall behavior of the stages designed using the different design approaches and their operating range. Time-resolved measurements show details of the unsteady flow field within the diffuser close to the impeller exit. The time-resolved data have been analyzed to assist the explanation of changes in the characteristics and associated efficiency penalties and gains. The processed data show the benefits of the new inverse design method with respect to an improvement of the compressor efficiency and the operating range. It is seen that the application of an inverse design method results in a more uniform flow into the diffuser.





Author(s):  
M. Zangeneh

In the design of centrifugal compressor impellers with splitter blades it is quite common to use the same blade shapes on the full and splitter blades with the splitters placed at the mid-pitch location. However, recent results using conventional design methodology have indicated that by moving the pitchwise location of the leading edge of the splitter it is possible to improve splitter performance. In this paper a 3D inverse design method is developed for the design of compressor impellers with splitters. In this design method the blades are designed subject to a specified distribution of the circulation on the full and splitter blades. The paper describes the choice of loading (or derivative of circulation with respect to meridional distance) and stacking condition to limit the complexity of the blade shape. Two different generic impellers are designed with different splitter leading edge location. The performance of these inverse designed impellers is then compared with the corresponding conventional impellers by using a 3D viscous code at design and off-design conditions.



Author(s):  
M. Zangeneh

This paper is concerned with the design of a high speed, 5 inch diameter radial-inflow turbine for medium-sized diesel engine turbocharger applications. The turbine was designed by a newly developed fully three dimensional compressible inverse design method, in which the blade shapes are computed for a specified distribution of rV¯θ. The designed blades had non-radial blade filaments and therefore the impeller was carefully analysed for its structural integrity. This was achieved by the iterative use of a three dimensional structural and vibration analysis program and the design method. The impeller was made by a casting process. The performance of the new impeller was measured and then compared with three other impellers, one conventional and two experimental. The new impeller performed substantially better than all the baseline turbines and showed a 5.5% improvement in the total-to-static efficiency over the conventional turbine, 2.5% of which was attributable to the aerodynamically superior blade shape computed by the three dimensional inverse design method. The improvement in efficiency was not just confined to the design point and an appreciable improvement could be observed at off-design conditions.





2020 ◽  
Vol 51 (1) ◽  
pp. 1-13
Author(s):  
Anatoliy Longinovich Bolsunovsky ◽  
Nikolay Petrovich Buzoverya ◽  
Nikita Aleksandrovich Pushchin


Sign in / Sign up

Export Citation Format

Share Document