Quantum K-Nearest-Neighbor Image Classification Algorithm Based on K-L Transform

Author(s):  
Nan-Run Zhou ◽  
Xiu-Xun Liu ◽  
Yu-Ling Chen ◽  
Ni-Suo Du
2018 ◽  
Vol 5 (1) ◽  
pp. 8 ◽  
Author(s):  
Ajib Susanto ◽  
Daurat Sinaga ◽  
Christy Atika Sari ◽  
Eko Hari Rachmawanto ◽  
De Rosal Ignatius Moses Setiadi

The classification of Javanese character images is done with the aim of recognizing each character. The selected classification algorithm is K-Nearest Neighbor (KNN) at K = 1, 3, 5, 7, and 9. To improve KNN performance in Javanese character written by the author, and to prove that feature extraction is needed in the process image classification of Javanese character. In this study selected Local Binary Patter (LBP) as a feature extraction because there are research objects with a certain level of slope. The LBP parameters are used between [16 16], [32 32], [64 64], [128 128], and [256 256]. Experiments were performed on 80 training drawings and 40 test images. KNN values after combination with LBP characteristic extraction were 82.5% at K = 3 and LBP parameters [64 64].


2018 ◽  
Vol 7 (3) ◽  
pp. 1372
Author(s):  
Soudamini Hota ◽  
Sudhir Pathak

‘Sentiment’ literally means ‘Emotions’. Sentiment analysis, synonymous to opinion mining, is a type of data mining that refers to the analy-sis of data obtained from microblogging sites, social media updates, online news reports, user reviews etc., in order to study the sentiments of the people towards an event, organization, product, brand, person etc. In this work, sentiment classification is done into multiple classes. The proposed methodology based on KNN classification algorithm shows an improvement over one of the existing methodologies which is based on SVM classification algorithm. The data used for analysis has been taken from Twitter, this being the most popular microblogging site. The source data has been extracted from Twitter using Python’s Tweepy. N-Gram modeling technique has been used for feature extraction and the supervised machine learning algorithm k-nearest neighbor has been used for sentiment classification. The performance of proposed and existing techniques is compared in terms of accuracy, precision and recall. It is analyzed and concluded that the proposed technique performs better in terms of all the standard evaluation parameters. 


2020 ◽  
Vol 16 (1) ◽  
pp. 59-64
Author(s):  
Jaja Miharja ◽  
Jordy Lasmana Putra ◽  
Nur Hadianto

Analysis of hotel review sentiment is very helpful to be used as a benchmark or reference for making hotel business decisions today. However, all the review information obtained must be processed first by using an algorithm. The purpose of this study is to compare the Classification Algorithm of Machine Learning to obtain information that has a better level of accuracy in the analysis of hotel reviews. The algorithm that will be used is k-NN (k-Nearest Neighbor) and NB (Naive Bayes). After doing the calculation, the following accuracy level is obtained: k-NN of 60,50% with an AUC value of 0.632 and NB of 85,25% with an AUC value of 0.658. These results can be determined by the right algorithm to assist in making accurate decisions by business people in the analysis of hotel reviews using the NB Algorithm.


2021 ◽  
Vol 5 (3) ◽  
pp. 905
Author(s):  
Muhammad Afrizal Amrustian ◽  
Vika Febri Muliati ◽  
Elsa Elvira Awal

Japanese is one of the most difficult languages to understand and read. Japanese writing that does not use the alphabet is the reason for the difficulty of the Japanese language to read. There are three types of Japanese, namely kanji, katakana, and hiragana. Hiragana letters are the most commonly used type of writing. In addition, hiragana has a cursive nature, so each person's writing will be different. Machine learning methods can be used to read Japanese letters by recognizing the image of the letters. The Japanese letters that are used in this study are hiragana vowels. This study focuses on conducting a comparative study of machine learning methods for the image classification of Japanese letters. The machine learning methods that were successfully compared are Naïve Bayes, Support Vector Machine, Decision Tree, Random Forest, and K-Nearest Neighbor. The results of the comparative study show that the K-Nearest Neighbor method is the best method for image classification of hiragana vowels. K-Nearest Neighbor gets an accuracy of 89.4% with a low error rate.


Sign in / Sign up

Export Citation Format

Share Document