Availability of the thermodynamics and weak cosmic censorship conjecture for a charged AdS black hole in the large dimension limit

Author(s):  
W. F. Nie ◽  
Y. Y. Feng ◽  
X. G. Lan
2021 ◽  
pp. 2150207
Author(s):  
Zi-Yu Fu ◽  
Bao-Qi Zhang ◽  
Chuan-Yin Wang ◽  
Hui-Ling Li

By analyzing the energy–momentum relationship of the absorbed fermions dropping into a Reissner–Nordstöm–anti-de Sitter black hole surrounded by dark matter, the laws of thermodynamic and weak cosmic censorship conjecture in the extended phase space are investigated. We find that the first law of thermodynamics is valid. However, the validity of the second law of thermodynamics depends on the density [Formula: see text] of the perfect fluid dark matter. In addition, we also find that when the fermions are absorbed, the structures of black hole surrounded by dark matter would not change. Therefore, weak cosmic censorship conjecture holds for the extreme black holes and the non-extreme black holes.


2019 ◽  
Vol 49 ◽  
pp. 1960020 ◽  
Author(s):  
Sanjar Shaymatov

We investigate the effect of magnetic field on the process of overcharging magnetized Reissner–Nordström black hole. It is well known that a four dimensional charged black hole could be overcharged. Contrary to this, we show that a magnetized charged black hole could not be overcharged beyond threshold value of the magnetic field. This occurs because the magnetic field does not allow for particle to reach black hole horizon. Thus magnetic field beyond its threshold value could restore the cosmic censorship conjecture.


2020 ◽  
Vol 29 (14) ◽  
pp. 2042003
Author(s):  
Shahar Hod

The Penrose strong cosmic censorship conjecture asserts that Cauchy horizons inside dynamically formed black holes are unstable to remnant matter fields that fall into the black holes. The physical importance of this conjecture stems from the fact that it provides a necessary condition for general relativity to be a truly deterministic theory of gravity. Determining the fate of the Penrose conjecture in nonasymptotically flat black hole spacetimes has been the focus of intense research efforts in recent years. In this paper, we provide a remarkably compact proof, which is based on Bekenstein’s generalized second law of thermodynamics, for the validity of the intriguing Penrose conjecture in physically realistic (dynamically formed) curved black hole spacetimes.


2020 ◽  
Vol 101 (6) ◽  
Author(s):  
Si-Jiang Yang ◽  
Jing Chen ◽  
Jun-Jie Wan ◽  
Shao-Wen Wei ◽  
Yu-Xiao Liu

2007 ◽  
Vol 22 (01) ◽  
pp. 65-74 ◽  
Author(s):  
RITUPARNO GOSWAMI ◽  
PANKAJ S. JOSHI

We construct and study here a class of collapsing scalar field models with a nonzero potential. The weak energy condition is satisfied by the collapsing configuration and it is shown that the end state of collapse could be either a black hole or a naked singularity. It is seen that physically it is the rate of collapse that governs these outcomes of the dynamical evolution. The implications for the cosmic censorship conjecture are discussed.


2020 ◽  
Author(s):  
Wen-Xiang Chen

According to traditional theory, the Schwarzschild black hole does not produce superradiation. If the boundary conditions are set up in advance, this possibility will be combined with the boson-coupled wave function in the Schwarzschild black hole, where the incident boson will have a mirrored mass, so even the Schwarzschild black hole can generate superradiation phenomena.Recently, an article of mine obtained interesting results about the Schwarzschild black hole can generate superradiation phenomena. The result contains some conclusions that violate the "no-hair theorem". We know that the phenomenon of black hole superradiation is a process of entropy reduction I found that the weak cosmic censorship conjecture may be violated.


2021 ◽  
Vol 19 ◽  
pp. 204-207
Author(s):  
Amal Pushp

According to the cosmic censorship conjecture, it is impossible for nature to have a physical singularity without a horizon because if it were to arise in any formalism, for instance as an extremal black hole (Kerr or Reissner-Nordstrom) then the surface gravity κ = 0, which is a strict violation of the third law of black hole thermodynamics. In this paper we explore whether a true singularity can exist without defying this law.


Sign in / Sign up

Export Citation Format

Share Document