Dual Fluorescence of a 10-Hydroxyacridine(1,8)Dione Derivative in Polar Solvents

Author(s):  
S. L. Bondarev ◽  
A. N. Pirko ◽  
T. F. Raichenok ◽  
A. S. Pilipovich
1980 ◽  
Vol 35 (4) ◽  
pp. 378-380
Author(s):  
Z. Salamon ◽  
A. Skibiński

Abstract The spectral characteristics (absorption, fluorescence and lifetimes of fluorescence) of methine dyes in different solvents are presented. The results show that the methine dyes in polar solvents emit a dual fluorescence. From the dependence of the fluorescence spectrum on the dye con-centration it is suggested that excimer formation is responsible for the second band of fluorescence.


2020 ◽  
Author(s):  
Marat Korsik ◽  
Edwin Tse ◽  
David Smith ◽  
William Lewis ◽  
Peter J. Rutledge ◽  
...  

<p></p><p>We have discovered and studied a <i>tele</i>substitution reaction in a biologically important heterocyclic ring system. Conditions that favour the <i>tele</i>-substitution pathway were identified: the use of increased equivalents of the nucleophile or decreased equivalents of base, or the use of softer nucleophiles, less polar solvents and larger halogens on the electrophile. Using results from X-ray crystallography and isotope labelling experiments a mechanism for this unusual transformation is proposed. We focused on this triazolopyrazine as it is the core structure of the <i>in vivo </i>active anti-plasmodium compounds of Series 4 of the Open Source Malaria consortium.</p> <p> </p> <p>Archive of the electronic laboratory notebook with the description of all conducted experiments and raw NMR data could be accessed via following link <a href="https://ses.library.usyd.edu.au/handle/2123/21890">https://ses.library.usyd.edu.au/handle/2123/21890</a> . For navigation between entries of laboratory notebook please use file "Strings for compounds in the article.pdf" that works as a reference between article codes and notebook codes, also this file contain SMILES for these compounds. </p><br><p></p>


2018 ◽  
Author(s):  
David Ascough ◽  
Fernanda Duarte ◽  
Robert Paton

The base-catalyzed rearrangement of arylindenols is a rare example of a suprafacial [1,3]-hydrogen atom transfer. The mechanism has been proposed to proceed via sequential [1,5]-sigmatropic shifts, which occur in a selective sense and avoid an achiral intermediate. A computational analysis using quantum chemistry casts serious doubt on these suggestions: these pathways have enormous activation barriers and in constrast to what is observed experimentally, they overwhelmingly favor a racemic product. Instead we propose that a suprafacial [1,3]-prototopic shift occurs in a two-step deprotonation/reprotonation sequence. This mechanism is favored by 15 kcal mol<sup>-1</sup> over that previously proposed. Most importantly, this is also consistent with stereospecificity since reprotonation occurs rapidly on the same p-face. We have used explicitly-solvated molecular dynamics studies to study the persistence and condensed-phase dynamics of the intermediate ion-pair formed in this reaction. Chirality transfer is the result of a particularly resilient contact ion-pair, held together by electrostatic attraction and a critical NH···p interaction which ensures that this species has an appreciable lifetime even in polar solvents such as DMSO and MeOH.


2020 ◽  
Vol 20 (3) ◽  
pp. 192-208 ◽  
Author(s):  
Talita Odriane Custodio Leite ◽  
Juliana Silva Novais ◽  
Beatriz Lima Cosenza de Carvalho ◽  
Vitor Francisco Ferreira ◽  
Leonardo Alves Miceli ◽  
...  

Background: According to the World Health Organization, antimicrobial resistance is one of the most important public health threats of the 21st century. Therefore, there is an urgent need for the development of antimicrobial agents with new mechanism of action, especially those capable of evading known resistance mechanisms. Objective: We described the synthesis, in vitro antimicrobial evaluation, and in silico analysis of a series of 1H-indole-4,7-dione derivatives. Methods: The new series of 1H-indole-4,7-diones was prepared with good yield by using a copper(II)- mediated reaction between bromoquinone and β-enamino ketones bearing alkyl or phenyl groups attached to the nitrogen atom. The antimicrobial potential of indole derivatives was assessed. Molecular docking studies were also performed using AutoDock 4.2 for Windows. Characterization of all compounds was confirmed by one- and two-dimensional NMR techniques 1H and 13C NMR spectra [1H, 13C – APT, 1H x 1H – COSY, HSQC and HMBC], IR and mass spectrometry analysis. Results: Several indolequinone compounds showed effective antimicrobial profile against Grampositive (MIC = 16 µg.mL-1) and Gram-negative bacteria (MIC = 8 µg.mL-1) similar to antimicrobials current on the market. The 3-acetyl-1-(2,5-dimethylphenyl)-1H-indole-4,7-dione derivative exhibited an important effect against different biofilm stages formed by a serious hospital life-threatening resistant strain of Methicillin-Resistant Staphylococcus aureus (MRSA). A hemocompatibility profile analysis based on in vitro hemolysis assays revealed the low toxicity effects of this new series. Indeed, in silico studies showed a good pharmacokinetics and toxicological profiles for all indolequinone derivatives, reinforcing their feasibility to display a promising oral bioavailability. An elucidation of the promising indolequinone derivatives binding mode was achieved, showing interactions with important sites to biological activity of S. aureus DNA gyrase. These results highlighted 3-acetyl-1-(2-hydroxyethyl)-1Hindole- 4,7-dione derivative as broad-spectrum antimicrobial prototype to be further explored for treating bacterial infections. Conclusion: The highly substituted indolequinones were obtained in moderate to good yields. The pharmacological study indicated that these compounds should be exploited in the search for a leading substance in a project aimed at obtaining new antimicrobials effective against Gram-negative bacteria.


2019 ◽  
Vol 15 (4) ◽  
pp. 442-452
Author(s):  
Kashyap Kumar Dubey ◽  
Punit Kumar

Background: Malaria is one of the life threatening diseases which is caused by Plasmodium sp. of protozoa and uses Anopheles mosquitos as vector. Plasmodium vivax and Plasmodium falciparum are common form of malaria parasite. Artemisinin is reported for its antimalarial activities and Artemether which is a methyl ether derivative of Artemisinin, has been found effective against P. falciparum. Methods: In the present study, bioconversion of Artemisinin into Artemether was carried out experimentally and the statistical tools like experimental factorial design and Response Surface Methodology were used to find optimal conditions (concentration of Artemisinin, age of inoculum, temperature & pH) using Cunninghamella echinulata var. elegans. Experimental conditions for maximum product recovery from culture broth were also optimized using various polar and non-polar solvents for extraction. Artemether purity was analyzed by reverse-phase HPLC. Experimental data was fitted in a quadratic model and effect of various parameters was analyzed. Results: It was found that bioconversion of Artemisinin into Artemether is growth associated process. It was observed that molasses used as carbon source supported production of Artemether to 3.4g/L. The biomass and oxygen are key element affecting of bioconversion of Artemisinin into Artemether such as higher dissolved oxygen reduced the Artemether bioconversion. The highest bioconversion of Artemisinin into Artemether was obtained at temperature 25.5oC, 5g/L concentration of Artemisinin, at age of inoculum of 44.5 h and at pH 6.0. Model suggested the highest bioconversion of Artemisinin into Artemether was 54% at shake flask level which was near about experimental finding. An optimal condition for bioconversion was also analyzed and 64% bioconversion was obtained in 5L bioreactor. Conclusion: The outcomes of the study provided optimum conditions for bioconversion of Artemisinin into Artemether.


Sign in / Sign up

Export Citation Format

Share Document