scholarly journals Data Complexity of Query Answering in Expressive Description Logics via Tableaux

2008 ◽  
Vol 41 (1) ◽  
pp. 61-98 ◽  
Author(s):  
Magdalena Ortiz ◽  
Diego Calvanese ◽  
Thomas Eiter
Author(s):  
Domenico Lembo ◽  
Riccardo Rosati ◽  
Domenico Fabio Savo

Controlled Query Evaluation (CQE) is a confidentiality-preserving framework in which private information is protected through a policy, and a (optimal) censor guarantees that answers to queries are maximized without violating the policy. CQE has been recently studied in the context of ontologies, where the focus has been mainly on the problem of the existence of an optimal censor. In this paper we instead consider query answering over all possible optimal censors. We study data complexity of this problem for ontologies specified in the Description Logics DL-LiteR and EL_bottom and for variants of the censor language, which is the language used by the censor to enforce the policy. In our investigation we also analyze the relationship between CQE and the problem of Consistent Query Answering (CQA). Some of the complexity results we provide are indeed obtained through mutual reduction between CQE and CQA.


Author(s):  
Gianluca Cima ◽  
Domenico Lembo ◽  
Riccardo Rosati ◽  
Domenico Fabio Savo

We study privacy-preserving query answering in Description Logics (DLs). Specifically, we consider the approach of controlled query evaluation (CQE) based on the notion of instance indistinguishability. We derive data complexity results for query answering over DL-LiteR ontologies, through a comparison with an alternative, existing confidentiality-preserving approach to CQE. Finally, we identify a semantically well-founded notion of approximated query answering for CQE, and prove that, for DL-LiteR ontologies, this form of CQE is tractable with respect to data complexity and is first-order rewritable, i.e., it is always reducible to the evaluation of a first-order query over the data instance.


Author(s):  
Meghyn Bienvenu

Inconsistency-tolerant query answering in the presence of ontologies has received considerable attention in recent years. However, existing work assumes that the data is expressed using the vocabulary of the ontology and is therefore not directly applicable to ontology-based data access (OBDA), where relational data is connected to the ontology via mappings. This motivates us to revisit existing results in the wider context of OBDA with mappings. After formalizing the problem, we perform a detailed analysis of the data complexity of inconsistency-tolerant OBDA for ontologies formulated in DL-Lite and other data-tractable description logics, considering three different semantics (AR, IAR, and brave), two notions of repairs (subset and symmetric difference), and two classes of global-as-view (GAV) mappings. We show that adding plain GAV mappings does not affect data complexity, but there is a jump in complexity if mappings with negated atoms are considered.


2013 ◽  
Vol 195 ◽  
pp. 335-360 ◽  
Author(s):  
Diego Calvanese ◽  
Giuseppe De Giacomo ◽  
Domenico Lembo ◽  
Maurizio Lenzerini ◽  
Riccardo Rosati

Author(s):  
Piero A. Bonatti

AbstractThis paper partially bridges a gap in the literature on Circumscription in Description Logics by investigating the tractability of conjunctive query answering in OWL2’s profiles. It turns out that the data complexity of conjunctive query answering is coNP-hard in circumscribed $\mathcal {E}{\mathscr{L}}$ E L and DL-lite, while in circumscribed OWL2-RL conjunctive queries retain their classical semantics. In an attempt to capture nonclassical inferences in OWL2-RL, we consider conjunctive queries with safe negation. They can detect some of the nonclassical consequences of circumscribed knowledge bases, but data complexity becomes coNP-hard. In circumscribed $\mathcal {E}{\mathscr{L}}$ E L , answering queries with safe negation is undecidable.


2008 ◽  
Vol 31 ◽  
pp. 157-204 ◽  
Author(s):  
B. Glimm ◽  
C. Lutz ◽  
I. Horrocks ◽  
U. Sattler

Conjunctive queries play an important role as an expressive query language for Description Logics (DLs). Although modern DLs usually provide for transitive roles, conjunctive query answering over DL knowledge bases is only poorly understood if transitive roles are admitted in the query. In this paper, we consider unions of conjunctive queries over knowledge bases formulated in the prominent DL SHIQ and allow transitive roles in both the query and the knowledge base. We show decidability of query answering in this setting and establish two tight complexity bounds: regarding combined complexity, we prove that there is a deterministic algorithm for query answering that needs time single exponential in the size of the KB and double exponential in the size of the query, which is optimal. Regarding data complexity, we prove containment in co-NP.


2021 ◽  
Author(s):  
Anneke Haga ◽  
Carsten Lutz ◽  
Leif Sabellek ◽  
Frank Wolter

We introduce and study several notions of approximation for ontology-mediated queries based on the description logics ALC and ALCI. Our approximations are of two kinds: we may (1) replace the ontology with one formulated in a tractable ontology language such as ELI or certain TGDs and (2) replace the database with one from a tractable class such as the class of databases whose treewidth is bounded by a constant. We determine the computational complexity and the relative completeness of the resulting approximations. (Almost) all of them reduce the data complexity from coNP-complete to PTime, in some cases even to fixed-parameter tractable and to linear time. While approximations of kind (1) also reduce the combined complexity, this tends to not be the case for approximations of kind (2). In some cases, the combined complexity even increases.


Author(s):  
GABRIELLA PASI ◽  
RAFAEL PEÑALOZA

Abstract A prominent problem in knowledge representation is how to answer queries taking into account also the implicit consequences of an ontology representing domain knowledge. While this problem has been widely studied within the realm of description logic ontologies, it has been surprisingly neglected within the context of vague or imprecise knowledge, particularly from the point of view of mathematical fuzzy logic. In this paper, we study the problem of answering conjunctive queries and threshold queries w.r.t. ontologies in fuzzy DL-Lite. Specifically, we show through a rewriting approach that threshold query answering w.r.t. consistent ontologies remains in ${AC}^{0}$ in data complexity, but that conjunctive query answering is highly dependent on the selected triangular norm, which has an impact on the underlying semantics. For the idempotent Gödel t-norm, we provide an effective method based on a reduction to the classical case.


2020 ◽  
Vol 34 (4) ◽  
pp. 533-537 ◽  
Author(s):  
Leif Sabellek

AbstractAn ontology-mediated query (OMQ) consists of a database query paired with an ontology. When evaluated on a database, an OMQ returns not only the answers that are already in the database, but also those answers that can be obtained via logical reasoning using rules from ontology. There are many open questions regarding the complexities of problems related to OMQs. Motivated by the use of ontologies in practice, new reasoning problems which have never been considered in the context of ontologies become relevant, since they can improve the usability of ontology enriched systems. This thesis deals with various reasoning problems that emerge from ontology-mediated querying and it investigates the computational complexity of these problems. We focus on ontologies formulated in Horn description logics, which are a popular choice for ontologies in practice. In particular, the thesis gives results regarding the data complexity of OMQ evaluation by completely classifying complexity and rewritability questions for OMQs based on an EL ontology and a conjunctive query. Furthermore, the query-by-example problem, and the expressibility and verification problem in ontology-based data access are introduced and investigated.


Sign in / Sign up

Export Citation Format

Share Document