The 3D Structure of the Binding Pocket of the Human Oxytocin Receptor for Benzoxazine Antagonists, Determined by Molecular Docking, Scoring Functions and 3D-QSAR Methods

2005 ◽  
Vol 19 (5) ◽  
pp. 341-356 ◽  
Author(s):  
Balázs Jójárt ◽  
Tamás A. Martinek ◽  
Árpád Márki
2021 ◽  
Vol 23 (1) ◽  
pp. 43
Author(s):  
Jacob Spiegel ◽  
Hanoch Senderowitz

Virtual screening (VS) is a well-established method in the initial stages of many drug and material design projects. VS is typically performed using structure-based approaches such as molecular docking, or various ligand-based approaches. Most docking tools were designed to be as global as possible, and consequently only require knowledge on the 3D structure of the biotarget. In contrast, many ligand-based approaches (e.g., 3D-QSAR and pharmacophore) require prior development of project-specific predictive models. Depending on the type of model (e.g., classification or regression), predictive ability is typically evaluated using metrics of performance on either the training set (e.g.,QCV2) or the test set (e.g., specificity, selectivity or QF1/F2/F32). However, none of these metrics were developed with VS in mind, and consequently, their ability to reliably assess the performances of a model in the context of VS is at best limited. With this in mind we have recently reported the development of the enrichment optimization algorithm (EOA). EOA derives QSAR models in the form of multiple linear regression (MLR) equations for VS by optimizing an enrichment-based metric in the space of the descriptors. Here we present an improved version of the algorithm which better handles active compounds and which also takes into account information on inactive (either known inactive or decoy) compounds. We compared the improved EOA in small-scale VS experiments with three common docking tools, namely, Glide-SP, GOLD and AutoDock Vina, employing five molecular targets (acetylcholinesterase, human immunodeficiency virus type 1 protease, MAP kinase p38 alpha, urokinase-type plasminogen activator, and trypsin I). We found that EOA consistently outperformed all docking tools in terms of the area under the ROC curve (AUC) and EF1% metrics that measured the overall and initial success of the VS process, respectively. This was the case when the docking metrics were calculated based on a consensus approach and when they were calculated based on two different sets of single crystal structures. Finally, we propose that EOA could be combined with molecular docking to derive target-specific scoring functions.


2021 ◽  
Vol 7 (1) ◽  
pp. 42-47

There has been progressive improvement in computational drug design from last decade. Numerous computer aided compounds have been reported against neurodegenerative disorders. Wilson’s disease is a common neurodegenerative disease in humans associated with ATP7B that encodes a transmembrane copper-transporting ATPase which induces the copper export from hepatic cells into bile and supplies copper for the functional synthesis of Ceruloplasmin. Almost, 150 mutations of ATP7B have been identified lead to cause Wilson's disease having symptoms of cancers, loss of memory and postural instability. In this research article, 3D structure of ATP7B was predicted by using comparative modelling approaches. The predicted structures were evaluated by utilizing numerous evaluation tools and 98.50% of overall quality factor was observed for the final selected structure. ATOX1 was predicted as the interacting partner of ATP7B and molecular docking analyses of ATP7B and ATOX1 were conducted by using PatchDock. The least global energy of -35.45 Kcal/mol was observed having the interacting residues in the binding pocket. The reported interacting residues may help to target the specific drug development against ATP7B. This research article can be a major initiative to predict the therapeutic drug targets against Wilson’s disease.


2015 ◽  
Vol 12 (10) ◽  
pp. 837-843 ◽  
Author(s):  
An Zhou ◽  
Zeyu Wu ◽  
Ailing Hui ◽  
Bin Wang ◽  
Xianchun Duan ◽  
...  

2019 ◽  
Vol 16 (7) ◽  
pp. 808-817 ◽  
Author(s):  
Laxmi Banjare ◽  
Sant Kumar Verma ◽  
Akhlesh Kumar Jain ◽  
Suresh Thareja

Background: In spite of the availability of various treatment approaches including surgery, radiotherapy, and hormonal therapy, the steroidal aromatase inhibitors (SAIs) play a significant role as chemotherapeutic agents for the treatment of estrogen-dependent breast cancer with the benefit of reduced risk of recurrence. However, due to greater toxicity and side effects associated with currently available anti-breast cancer agents, there is emergent requirement to develop target-specific AIs with safer anti-breast cancer profile. Methods: It is challenging task to design target-specific and less toxic SAIs, though the molecular modeling tools viz. molecular docking simulations and QSAR have been continuing for more than two decades for the fast and efficient designing of novel, selective, potent and safe molecules against various biological targets to fight the number of dreaded diseases/disorders. In order to design novel and selective SAIs, structure guided molecular docking assisted alignment dependent 3D-QSAR studies was performed on a data set comprises of 22 molecules bearing steroidal scaffold with wide range of aromatase inhibitory activity. Results: 3D-QSAR model developed using molecular weighted (MW) extent alignment approach showed good statistical quality and predictive ability when compared to model developed using moments of inertia (MI) alignment approach. Conclusion: The explored binding interactions and generated pharmacophoric features (steric and electrostatic) of steroidal molecules could be exploited for further design, direct synthesis and development of new potential safer SAIs, that can be effective to reduce the mortality and morbidity associated with breast cancer.


Sign in / Sign up

Export Citation Format

Share Document