Adaptive Fuzzy Back-stepping Control of a Flexible Air-breathing Hypersonic Vehicle Subject to Input Constraints

2016 ◽  
Vol 87 (3-4) ◽  
pp. 565-582 ◽  
Author(s):  
Pengfei Wang ◽  
Jie Wang ◽  
Xiangwei Bu ◽  
Chang Luo ◽  
Shili Tan
2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Xingge Li ◽  
Gang Li

This article investigates a novel fuzzy-approximation-based nonaffine control strategy for a flexible air-breathing hypersonic vehicle (FHV). Firstly, the nonaffine models are decomposed into an altitude subsystem and a velocity subsystem, and the nonaffine dynamics of the subsystems are processed by using low-pass filters. For the unknown functions and uncertainties in each subsystem, fuzzy approximators are used to approximate the total uncertainties, and norm estimation approach is introduced to reduce the computational complexity of the algorithm. Aiming at the saturation problem of actuator, a saturation auxiliary system is designed to transform the original control problem with input constraints into a new control problem without input constraints. Finally, the superiority of the proposed method is verified by simulation.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987735
Author(s):  
Xingge Li ◽  
Gang Li ◽  
Yan Zhao ◽  
Xuchao Kang

In this article, aiming at the longitudinal dynamics model of air-breathing hypersonic vehicles, a fuzzy-approximation-based prescribed performance control scheme with input constraints is proposed. First, this article presents a novel prescribed performance function, which does not depend on the sign of initial tracking error. And combining prescribed performance control method with backstepping control, the control scheme can ensure that system can converge at a prescribed rate of convergence, overshoot, and steady-state error. In order to solve the problem that backstepping control method needs to be differentiated multiple times, fuzzy approximators are used to estimate the unknown functions, and norm estimation approach is used to simplify the computation of fuzzy approximator. Aiming at the problem of input saturation of actuator in subsystem of air-breathing hypersonic vehicle, the new auxiliary system is designed to ensure the stability and robustness of air-breathing hypersonic vehicle system under input constraints. Finally, the effectiveness of the proposed control strategy is verified by simulation analysis.


2016 ◽  
Vol 13 (6) ◽  
pp. 172988141667111 ◽  
Author(s):  
Peng Fei Wang ◽  
Jie Wang ◽  
Xiang Wei Bu ◽  
Ying Jie Jia

The design of an adaptive fuzzy tracking control for a flexible air-breathing hypersonic vehicle with actuator constraints is discussed. Based on functional decomposition methodology, velocity and altitude controllers are designed. Fuzzy logic systems are applied to approximate the lumped uncertainty of each subsystem of air-breathing hypersonic vehicle model. Every controllers contain only one adaptive parameter that needs to be updated online with a minimal-learning-parameter scheme. The back-stepping design is not demanded by converting the altitude subsystem into the normal output-feedback formulation, which predigests the design of a controller. The special contribution is that novel auxiliary systems are developed to compensate both the tracking errors and desired control laws, based on which the explored controller can still provide effective tracking of velocity and altitude commands when the inputs are saturated. Finally, reference trajectory tracking simulation shows the effectiveness of the proposed method in its application to air-breathing hypersonic vehicle control.


2015 ◽  
Vol 2015 ◽  
pp. 1-14
Author(s):  
Pengfei Wang ◽  
Jie Wang ◽  
Jianming Shi ◽  
Chang Luo ◽  
Shili Tan ◽  
...  

The design of an adaptive neural back-stepping control for a flexible air-breathing hypersonic vehicle (AHV) in the presence of input constraint and aerodynamic uncertainty is discussed. Based on functional decomposition, the dynamics can be decomposed into the velocity subsystem and the altitude subsystem. To guarantee the exploited controller’s robustness with respect to parametric uncertainties, neural network (NN) is applied to approximate the lumped uncertainty of each subsystem of AHV model. The exceptional contribution is that novel auxiliary systems are introduced to compensate both the tracking errors and desired control laws, based on which the explored controller can still provide effective tracking of velocity and altitude commands when the actuators are saturated. Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties, and varying disturbances.


Sign in / Sign up

Export Citation Format

Share Document