scholarly journals On the Taut String Interpretation and Other Properties of the Rudin–Osher–Fatemi Model in One Dimension

2019 ◽  
Vol 61 (9) ◽  
pp. 1276-1300
Author(s):  
Niels Chr Overgaard

Abstract We study the one-dimensional version of the Rudin–Osher–Fatemi (ROF) denoising model and some related TV-minimization problems. A new proof of the equivalence between the ROF model and the so-called taut string algorithm is presented, and a fundamental estimate on the denoised signal in terms of the corrupted signal is derived. Based on duality and the projection theorem in Hilbert space, the proof of the taut string interpretation is strictly elementary with the existence and uniqueness of solutions (in the continuous setting) to both models following as by-products. The standard convergence properties of the denoised signal, as the regularizing parameter tends to zero, are recalled and efficient proofs provided. The taut string interpretation plays an essential role in the proof of the fundamental estimate. This estimate implies, among other things, the strong convergence (in the space of functions of bounded variation) of the denoised signal to the corrupted signal as the regularization parameter vanishes. It can also be used to prove semi-group properties of the denoising model. Finally, it is indicated how the methods developed can be applied to related problems such as the fused lasso model, isotonic regression and signal restoration with higher-order total variation regularization.

2018 ◽  
Vol 52 (1) ◽  
pp. 275-303 ◽  
Author(s):  
Christian Clason ◽  
Florian Kruse ◽  
Karl Kunisch

This work is concerned with the determination of the diffusion coefficient from distributed data of the state. This problem is related to homogenization theory on the one hand and to regularization theory on the other hand. An approach is proposed which involves total variation regularization combined with a suitably chosen cost functional that promotes the diffusion coefficient assuming prespecified values at each point of the domain. The main difficulty lies in the delicate functional-analytic structure of the resulting nondifferentiable optimization problem with pointwise constraints for functions of bounded variation, which makes the derivation of useful pointwise optimality conditions challenging. To cope with this difficulty, a novel reparametrization technique is introduced. Numerical examples using a regularized semismooth Newton method illustrate the structure of the obtained diffusion coefficient.


1996 ◽  
Vol 324 ◽  
pp. 163-179 ◽  
Author(s):  
A. Levy ◽  
G. Ben-Dor ◽  
S. Sorek

The governing equations of the flow field which is obtained when a thermoelastic rigid porous medium is struck head-one by a shock wave are developed using the multiphase approach. The one-dimensional version of these equations is solved numerically using a TVD-based numerical code. The numerical predictions are compared to experimental results and good to excellent agreements are obtained for different porous materials and a wide range of initial conditions.


2018 ◽  
Vol 68 (5) ◽  
pp. 1097-1112 ◽  
Author(s):  
Feng Liu

Abstract In this paper we investigate the regularity properties of one-sided fractional maximal functions, both in continuous case and in discrete case. We prove that the one-sided fractional maximal operators $ \mathcal{M}_{\beta}^{+} $ and $ \mathcal{M}_{\beta}^{-} $ map $ W^{1,p}(\mathbb{R}) $ into $ W^{1,q}(\mathbb{R}) $ with 1 <p <∞, 0≤β<1/p and q=p/(1-pβ), boundedly and continuously. In addition, we also obtain the sharp bounds and continuity for the discrete one-sided fractional maximal operators $ M_{\beta}^{+} $ and $ M_{\beta}^{-} $ from $ \ell^{1}(\mathbb{Z}) $ to $ {\rm BV}(\mathbb{Z}) $. Here $ {\rm BV}(\mathbb{Z}) $ denotes the set of all functions of bounded variation defined on ℤ. The results we obtained represent significant and natural extensions of what was known previously.


2009 ◽  
Vol 19 (05) ◽  
pp. 1709-1732 ◽  
Author(s):  
B. M. BAKER ◽  
M. E. KIDWELL ◽  
R. P. KLINE ◽  
I. POPOVICI

We study the orbits, stability and coexistence of orbits in the two-dimensional dynamical system introduced by Kline and Baker to model cardiac rhythmic response to periodic stimulation — as a function of (a) kinetic parameters (two amplitudes, two rate constants) and (b) stimulus period. The original paper focused mostly on the one-dimensional version of this model (one amplitude, one rate constant), whose orbits, stability properties, and bifurcations were analyzed via the theory of skew-tent (hence unimodal) maps; the principal family of orbits were so-called "n-escalators", with n a positive integer. The two-dimensional analog (motivated by experimental results) has led to the current study of continuous, piecewise smooth maps of a polygonal planar region into itself, whose dynamical behavior includes the coexistence of stable orbits. Our principal results show (1) how the amplitude parameters control which escalators can come into existence, (2) escalator bifurcation behavior as the stimulus period is lowered — leading to a "1/n bifurcation law", and (3) the existence of basins of attraction via the coexistence of three orbits (two of them stable, one unstable) at the first (largest stimulus period) bifurcation. We consider the latter result our most important, as it is conjectured to be connected with arrhythmia.


2020 ◽  
Vol 15 ◽  
pp. 66
Author(s):  
Salvador Cruz-García

In this paper, we study the essential spectrum of the operator obtained by linearizing at traveling waves that occur in the one-dimensional version of the M5-model for mesenchymal cell movement inside a directed tissue made up of highly aligned fibers. We show that traveling waves are spectrally unstable in L2(ℝ; ℂ3) as the essential spectrum includes the imaginary axis. Tools in the proof include exponential dichotomies and Fredholm properties. We prove that a weighted space Lw2(ℝ; ℂ3) with the same function for the tree variables of the linearized operator is no suitable to shift the essential spectrum to the left of the imaginary axis. We find a pair of appropriate weight functions whereby on the weighted space Lwα2(ℝ; ℂ2) × Lwε2(ℝ; ℂ) the essential spectrum lies on {Reλ<0}, outside the imaginary axis.


Author(s):  
V. Prasath

A well-posed multiscale regularization scheme for digital image denoisingWe propose an edge adaptive digital image denoising and restoration scheme based on space dependent regularization. Traditional gradient based schemes use an edge map computed from gradients alone to drive the regularization. This may lead to the oversmoothing of the input image, and noise along edges can be amplified. To avoid these drawbacks, we make use of a multiscale descriptor given by a contextual edge detector obtained from local variances. Using a smooth transition from the computed edges, the proposed scheme removes noise in flat regions and preserves edges without oscillations. By incorporating a space dependent adaptive regularization parameter, image smoothing is driven along probable edges and not across them. The well-posedness of the corresponding minimization problem is proved in the space of functions of bounded variation. The corresponding gradient descent scheme is implemented and further numerical results illustrate the advantages of using the adaptive parameter in the regularization scheme. Compared with similar edge preserving regularization schemes, the proposed adaptive weight based scheme provides a better multiscale edge map, which in turn produces better restoration.


2019 ◽  
Vol 22 (3) ◽  
pp. 644-657 ◽  
Author(s):  
Zhiyuan Li ◽  
Masahiro Yamamoto

Abstract This paper deals with the unique continuation of solutions for a one-dimensional anomalous diffusion equation with Caputo derivative of order α ∈ (0, 1). Firstly, the uniqueness of solutions to a lateral Cauchy problem for the anomalous diffusion equation is given via the Theta function method, from which we further verify the unique continuation principle.


2014 ◽  
Vol 22 (9) ◽  
pp. 10500 ◽  
Author(s):  
Guanghua Gong ◽  
Hongming Zhang ◽  
Minyu Yao

Author(s):  
Jörg Weber

The time evolution of a collisionless plasma is modeled by the Vlasov-Maxwell system which couples the Vlasov equation (the transport equation) with the Maxwell equations of electrodynamics. We only consider a two-dimensional version of the problem since existence of global, classical solutions of the full three-dimensional problem is not known. We add external currents to the system, in applications generated by coils, to control the plasma properly. After considering global existence of solutions to this system, differentiability of the control-to-state operator is proved. In applications, on the one hand, we want the shape of the plasma to be close to some desired shape. On the other hand, a cost term penalizing the external currents shall be as small as possible. These two aims lead to minimizing some objective function. We restrict ourselves to only such control currents that are realizable in applications. After that, we prove existence of a minimizer and deduce first order optimality conditions and the adjoint equation.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 396
Author(s):  
Roman Cherniha ◽  
Joanna Stachowska-Pietka ◽  
Jacek Waniewski

Fluid and solute transport in poroelastic media is studied. Mathematical modeling of such transport is a complicated problem because of the volume change of the specimen due to swelling or shrinking and the transport processes are nonlinearly linked. The tensorial character of the variables adds also substantial complication in both theoretical and experimental investigations. The one-dimensional version of the theory is less complex and may serve as an approximation in some problems, and therefore, a one-dimensional (in space) model of fluid and solute transport through a poroelastic medium with variable volume is developed and analyzed. In order to obtain analytical results, the Lie symmetry method is applied. It is shown that the governing equations of the model admit a non-trivial Lie symmetry, which is used for construction of exact solutions. Some examples of the solutions are discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document