TiO2 foams with poly-(d,l-lactic acid) (PDLLA) and PDLLA/Bioglass® coatings for bone tissue engineering scaffolds

2009 ◽  
Vol 44 (6) ◽  
pp. 1442-1448 ◽  
Author(s):  
Saša Novak ◽  
John Druce ◽  
Qi-Zhi Chen ◽  
Aldo R. Boccaccini
2020 ◽  
Vol 138 (2) ◽  
pp. 49662
Author(s):  
Gleb Dubinenko ◽  
Aleksey Zinoviev ◽  
Evgeny Bolbasov ◽  
Anna Kozelskaya ◽  
Evgeniy Shesterikov ◽  
...  

2013 ◽  
Vol 9 (3) ◽  
pp. 424-429 ◽  
Author(s):  
Jung Bok Lee ◽  
Ha Na Park ◽  
Wan-Kyu Ko ◽  
Min Soo Bae ◽  
Dong Nyoung Heo ◽  
...  

2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


Nano LIFE ◽  
2012 ◽  
Vol 02 (01) ◽  
pp. 1250005 ◽  
Author(s):  
BIN DUAN ◽  
MIN WANG ◽  
WILLIAM W. LU

Selective laser sintering (SLS), a rapid prototyping technology, was investigated for producing bone tissue engineering scaffolds. Completely biodegradable osteoconductive calcium phosphate (Ca-P)/poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) scaffolds were successfully fabricated via SLS using Ca-P/PHBV nanocomposite microspheres. In the SLS manufacturing route, the architecture of tissue engineering scaffolds (pore shape, size, interconnectivity, etc.) can be designed and the sintering process can be optimized for obtaining scaffolds with desirable porous structures and mechanical properties. SLS was also shown to be very effective in producing highly complex porous structures using nanocomposite microspheres. To render SLS-formed Ca-P/PHBV scaffolds osteoinductive, recombinant human bone morphogenetic protein-2 (rhBMP-2) could be loaded onto the scaffolds. For achieving a controlled release of rhBMP-2 from scaffolds, surface modification of Ca-P/PHBV scaffolds by gelatin entrapment and heparin immobilization was needed. The immobilized heparin provided binding affinity for rhBMP-2. Surface modified Ca-P/PHBV nanocomposite scaffolds loaded with rhBMP-2 enhanced the proliferation of human umbilical cord derived mesenchymal stem cells (hUCMSCs) and also their alkaline phosphatase activity. In in vivo experiments using a rabbit model, surface modified Ca-P/PHBV nanocomposite scaffolds loaded with rhBMP-2 promoted ectopic bone formation, exhibiting their osteoinductivity. The strategy of combining advanced scaffold fabrication, nanocomposite material, and controlled growth factor delivery is promising for bone tissue regeneration.


2001 ◽  
Vol 45 (7) ◽  
pp. 773-779 ◽  
Author(s):  
Zhuo Xiong ◽  
Yongnian Yan ◽  
Renji Zhang ◽  
Lei Sun

2021 ◽  
Vol 12 (5) ◽  
pp. 6504-6515

With the development of additive manufacturing technology, 3D bone tissue engineering scaffolds have evolved. Bone tissue engineering is one of the techniques for repairing bone abnormalities caused by a variety of circumstances, such as injuries or the need to support damaged sections. Many bits of research have gone towards developing 3D bone tissue engineering scaffolds all across the world. The assessment of the environmental impact, on the other hand, has received less attention. As a result, the focus of this study is on developing a life cycle assessment (LCA) model for 3D bone tissue engineering scaffolds and evaluating potential environmental impacts. One of the methodologies to evaluating a complete environmental impact assessment is life cycle assessment (LCA). The cradle-to-grave method will be used in this study, and GaBi software was used to create the analysis for this study. Previous research on 3D bone tissue engineering fabrication employing poly(ethylene glycol) diacrylate (PEGDA) soaked in dimethyl sulfoxide (DMSO), and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) as a photoinitiator will be reviewed. Meanwhile, digital light processing (DLP) 3D printing is employed as the production technique. The GaBi program and the LCA model developed to highlight the potential environmental impact. This study shows how the input and output of LCA of 3D bone tissue engineering scaffolds might contribute to environmental issues such as air, freshwater, saltwater, and industrial soil emissions. The emission contributing to potential environmental impacts comes from life cycle input, electricity and transportation consumption, manufacturing process, and material resources. The results from this research can be used as an indicator for the researcher to take the impact of the development of 3D bone tissue engineering on the environment seriously.


Sign in / Sign up

Export Citation Format

Share Document