bioactive composites
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 18)

H-INDEX

15
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7668
Author(s):  
Heba B. Abdel-Maksoud ◽  
Aziza W. Bahanan ◽  
Lujain J. Alkattabi ◽  
Turki A. Bakhsh

Objective. The aim of the present study was to evaluate the adaptation of newly introduced bioactive restorative materials to the cavity floor using cross-polarization optical coherence tomography (CP-OCT). Materials and Methods. Round class V cavities were prepared on the proximal surfaces of sixty non-carious human anterior teeth (0.5 mm depth × 4 mm diameter), which were divided into groups according to the restorative material (n = 15). In the VF group, Vertise flow composite (Kerr, Orange, CA, USA) was used, in the BF group, Beautifil II composite (Shofu, Koyoto, Japan) was used, and in the AB group, ACTIVA BioACTIVE composite (Pulpdent, Watertown, NY, USA) was used. Cavities were restored using the bulk filling technique and cured according to the manufacturers’ instructions. Then, the specimens were immersed in a contrasting agent, and image acquisitions were taken by CP-OCT to calculate the adaptation percentage by using an image analysis software. Results. B-scans showed a diffuse bright band of white pixels at the tooth-resin interface that was interpreted as a micro-gap present between the cavity floor and restorative material. The Kruskal-Wallis test showed a statistically significant difference between all tested groups with the AB group representing the least gap formation, followed by the BF group, and then the VF group, which demonstrated the highest gap formation. Conclusions. In class V cavities, better adaptation to the cavity floor can be obtained when using ACTIVA BioACTIVE more than Vertise flow and Beautifil II composites. In addition, CP-OCT is considered a non-destructive imaging tool that helps in evaluating the quality of the tooth-restoration interface when bioactive composites are used.


2021 ◽  
Vol 46 (3) ◽  
pp. E158-E170
Author(s):  
DP Silva ◽  
BA Resende ◽  
M Kury ◽  
CB André ◽  
CPM Tabchoury ◽  
...  

SUMMARY This study evaluated intrapulpal concentration and hydrogen peroxide (HP) penetration at the interface of teeth restored with bioactive composites, using conventional or bulk-fill composites. Cylindrical cavities were prepared on the buccal surface of bovine incisor crowns (n=20) and restored with: resin modified glass-ionomer (RMGI, Riva Light Cure, SDI), non-bioactive bulk-fill composite (FB, Filtek Bulk, 3M Oral Care), non-bioactive conventional composite (FZ, Filtek Z350, 3M Oral Care), bioactive bulk-fill composite (AC, Activa BioActive, Pulpedent), and bioactive conventional composite (BII, Beautifil II, Shofu). After 5,000 thermal cycles, restorations (n=10) were exposed to high (35% HP [4 applications of 8 min/session-4 sessions]) or low (9.5% HP [30 min/day-14 days]) concentration bleaching protocols. After the last bleaching application, the HP intrapulpal concentration was determined. Additional teeth were restored, pigmented with rhodamine B solution, and HP penetration around the interface was observed under laser scanning confocal fluorescence microscopy (LSCFM, n=3). The presence of gaps at the interface was observed on replicas of the cross-sectioned samples under scanning electron microscopy (SEM, n=5). Data were submitted to one-way (gap analysis) and twoway analysis of variance (ANOVA; HP intrapulpal concentration) and Tukey test (α=0.05). The LSCFM images were qualitatively analyzed. The restored teeth submitted to 35% HP presented higher HP intrapulpal concentration than teeth submitted to 9.5% HP (p<0.05). No differences in HP intrapulpal concentration was observed among groups (p>0.05) when exposed to 9.5% HP. Lower HP intrapulpal concentration was observed for teeth restored with RMGI exposed to HP 35%, when compared with teeth restored with nonbioactive conventional (FZ; p=0.004) and bulk-fill composites (FB; p=0.01). No gap formation was observed at the outer enamel adhesive interface for all restorative materials. LSCFM images showed that 35% HP promoted greater degradation of rhodamine B at the enamel, except for RMGI. In this context, RMGI promoted lower HP intrapulpal concentration than non-bioactive conventional and bulk-fill composites.


2021 ◽  
Vol 06 ◽  
Author(s):  
Pratibha Salunkhe ◽  
Priya Bhoyar ◽  
Rupesh Zope ◽  
Sandeep P Shewale

: The phenolic compounds are normally originating in together edible and nonedible plants, and they have been described several nanoscience based biological properties, containing antioxidant movement. The phenolic compound is present in fruits, vegetables, leaves, tea, coffee, peels, wine, etc. Also, the obtained phenolic compounds from therapeutic herbs and nutritional plants include phenolic acids, flavonoids, tannins and other. In a corresponding path from last two decades, nanoscience has wide application in extraction of bioactive components from various natural resources. Furthermore, nanomaterials have made significant contribution for the improvement of analytical techniques towards the collective objective to develop analytical recital and sustainability to developing new techniques for maintain the superiority assurance of food and beverages. In modern years, extraction and refining of bioactive composites as of natural sources proven excessive attention as they are used in various sectors such as foodstuffs, perfumery, cosmetics, paints and medicinal. Hence, separation of natural products and identification of new natural sources of bioactive compounds have increased methodical and industrialized significance. As the extraction and purification of these bioactive composites are the main steps to come across the rising demands. In this study extraction of the phenolic compound was carried out from the Citrus Sinensis (Orange) powder by the stirred batch extraction and comparison with the traditional soxhlet extraction techniques. The investigational outcomes confirm that the extracted phenolic compounds were maximally concentrated of 0.101 and 0.126 mg of GAE/g at speed of agitation (rpm) temperature (̊C) respectively.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1976
Author(s):  
Robert Adamski ◽  
Dorota Siuta

The aim of this work was to fabricate novel bioactive composites based on chitosan and non-organic silica, reinforced with calcium β-glycerophosphate (Ca-GP), sodium β-glycerophosphate pentahydrate (Na-GP), and hydroxyapatite powder (HAp) in a range of concentrations using the sol–gel method. The effect of HAp, Na-GP, and Ca-GP contents on the mechanical properties, i.e., Young’s modulus, compressive strength, and yield strain, of hybrid composites was analyzed. The microstructure of the materials obtained was visualized by SEM. Moreover, the molecular interactions according to FTIR analysis and biocompatibility of composites obtained were examined. The CS/Si/HAp/Ca-GP developed from all composites analyzed was characterized by the well-developed surface of pores of two sizes: large ones of 100 μm and many smaller pores below 10 µm, the behavior of which positively influenced cell proliferation and growth, as well as compressive strength in a range of 0.3 to 10 MPa, Young’s modulus from 5.2 to 100 MPa, and volumetric shrinkage below 60%. This proved to be a promising composite for applications in tissue engineering, e.g., filling small bone defects.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
António H. S. Delgado ◽  
Hasan Jamal ◽  
Anne Young ◽  
Paul Ashley

Abstract Background Adhesive restorations allow a conservative approach to caries management and are increasingly used as a restorative option in pediatric dentistry. Placement can be difficult in children because of the cooperation required for multiple bonding steps. Due to this, it is vital to assess if novel, simpler strategies have been featured in clinical trials and if clinical trials are researching the different existing adhesive strategies. Methods This review followed Preferred Reporting Items for Systematic Reviews and Meta-analysis adapted for Scoping Reviews (PRISMA-ScR) guidelines. PubMed/Medline, Cochrane Central, Scopus and EMBASE were used for systematic search, using free keywords and controlled search terms. Clinical trials of children requiring a restorative intervention which featured adhesive strategies were included. Only peer-reviewed trials of primary teeth restored with resin composites, published in the last 10-year period were eligible. Data charting was accomplished independently by two reviewers, and studies were summarized according to their date, type, intervention, sample size, observation period, outcomes and conclusions. Quality assessment was performed using Cochrane’s Risk of Bias 2.0 tool. Results 700 potentially relevant references were found, which after a rigorous inclusion scheme, resulted in a total of 8 eligible clinical trials. Out of these, 7 were randomized clinical trials. Most trials featured a split-mouth design and the observation period ranged from 12 to 36 months. The trials evaluated interventions of two self-adhesive composites, two bulk-fill composites, two novel composites, one compomer and eight adhesives from different strategies. Most studies (4/8) included were judged to raise some concerns regarding risk of bias, while two were classified as high risk and two as low. Conclusion Few studies comparing adhesive strategies were found, especially adhesives in sound substrates. The existing studies do not reflect all current approaches that could be used in pediatric dentistry. Further studies addressing bioactive composites and contemporary adhesives are necessary.


2020 ◽  
Vol 138 (5) ◽  
pp. 49759 ◽  
Author(s):  
Eduardo Henrique Backes ◽  
Laís Nóbile Pires ◽  
Heloisa Sobreiro Selistre‐de‐Araujo ◽  
Lidiane Cristina Costa ◽  
Fabio Roberto Passador ◽  
...  

2020 ◽  
Vol 11 (2) ◽  
pp. 35
Author(s):  
Dibakar Mondal ◽  
Andrei Zaharia ◽  
Kibret Mequanint ◽  
Amin S. Rizkalla

Bioactive glass (BG) nanoparticles have wide applications in bone repair due to their bone-bonding and biodegradable nature. In this work, nanometric rod-shaped ternary SiO2-CaO-P2O5 bioactive glass particles were prepared through sol-gel chemistry followed by a base-induced hydrothermal process at 130 °C and 170 °C for various times up to 36 h. This facile, low-temperature and surfactant-free hydrothermal process has shown to be capable of producing uniform nanorods and nanowires. One-dimensional growth of nanorods and the characteristics of siloxane bridging networks were dependent on the hydrothermal temperature and time. Hardened bioactive composites were prepared from BG nanorods and cryo-milled poly(vinylpyrrolidone-co-triethoxyvinylsilane) in the presence of ammonium phosphate as potential bone graft biomaterials. Covalent crosslinking has been observed between the organic and inorganic components within these composites. The ultimate compressive strength and modulus values increased with increasing co-polymer content, reaching 27 MPa and 500 MPa respectively with 30% co-polymer incorporation. The materials degraded in a controlled non-linear manner when incubated in phosphate-buffered saline from 6 h to 14 days. Fibroblast cell attachment and spreading on the composite were not as good as the positive control surfaces and suggested that they may require protein coating in order to promote favorable cell interactions.


Sign in / Sign up

Export Citation Format

Share Document