Can particle-stabilized inorganic dispersions be high-temperature heat-transfer and thermal energy storage fluids?

2013 ◽  
Vol 48 (11) ◽  
pp. 4023-4031 ◽  
Author(s):  
Anne K. Starace ◽  
Judith C. Gomez ◽  
Greg C. Glatzmaier
2016 ◽  
Author(s):  
Mitchell Shinn ◽  
Karthik Nithyanandam ◽  
Amey Barde ◽  
Richard Wirz

Currently, concentrated solar power (CSP) plants utilize thermal energy storage (TES) in order to store excess energy so that it can later be dispatched during periods of intermittency or during times of high energy demand. Elemental sulfur is a promising candidate storage fluid for high temperature TES systems due to its high thermal mass, moderate vapor pressure, high thermal stability, and low cost. The objective of this paper is to investigate the behavior of encapsulated sulfur in a shell and tube configuration. An experimentally validated, transient, two-dimensional numerical model of the shell and tube TES system is presented. Initial results from both experimental and numerical analysis show high heat transfer performance of sulfur. The numerical model is then used to analyze the dynamic response of the elemental sulfur based TES system for multiple charging and discharging cycles. A sensitivity analysis is performed to analyze the effect of geometry (system length), cutoff temperature, and heat transfer fluid on the overall utilization of energy stored within this system. Overall, this paper demonstrates a systematic parametric study of a novel low cost, high performance TES system based on elemental sulfur as the storage fluid that can be utilized for different high temperature applications.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Sarada Kuravi ◽  
Jamie Trahan ◽  
Yogi Goswami ◽  
Chand Jotshi ◽  
Elias Stefanakos ◽  
...  

A high-temperature, sensible heat thermal energy storage (TES) system is designed for use in a central receiver concentrating solar power plant. Air is used as the heat transfer fluid and solid bricks made out of a high storage density material are used for storage. Experiments were performed using a laboratory-scale TES prototype system, and the results are presented. The air inlet temperature was varied between 300 °C to 600 °C, and the flow rate was varied from 50 cubic feet per minute (CFM) to 90 CFM. It was found that the charging time decreases with increase in mass flow rate. A 1D packed-bed model was used to simulate the thermal performance of the system and was validated with the experimental results. Unsteady 1D energy conservation equations were formulated for combined convection and conduction heat transfer and solved numerically for charging/discharging cycles. Appropriate heat transfer and pressure drop correlations from prior literature were identified. A parametric study was done by varying the bed dimensions, fluid flow rate, particle diameter, and porosity to evaluate the charging/discharging characteristics, overall thermal efficiency, and capacity ratio of the system.


1996 ◽  
Vol 118 (1) ◽  
pp. 50-57 ◽  
Author(s):  
A. A. Jalalzadeh-Azar ◽  
W. G. Steele ◽  
G. A. Adebiyi

A model is developed and experimentally verified to study the heat transfer in a high-temperature packed bed thermal energy storage system utilizing zirconium oxide pellets. The packed bed receives flue gas at elevated temperatures varying with time during the storage process and utilizes air for the recovery process. Both convection and radiation are included in the model of the total heat transfer between the gas and the pellets. It is found that thermal radiation and intraparticle conduction do not play a major role in the overall heat transfer in the packed bed under the specified operating conditions. An uncertainty analysis is performed to investigate the propagation of the uncertainties in the variables to the overall uncertainty in the model predictions and the experimental results.


Author(s):  
Sarada Kuravi ◽  
Jamie Trahan ◽  
Yogi Goswami ◽  
Chand Jotshi ◽  
Elias Stefanakos ◽  
...  

A high temperature sensible heat thermal energy storage (TES) system is designed for use in a central receiver concentrating solar power plant. Air is used as the heat transfer fluid and solid bricks made out of a high storage density material are used for storage. Experiments were performed using a laboratory scale TES prototype system and the results are presented. The air inlet temperature was varied between 300°C to 600°C and the flow rate was varied from 50 CFM to 90 CFM. It was found that the charging time decreases with increase in mass flow rate. A 1D packed bed model was used to simulate the thermal performance of the system and was validated with the experimental results. Unsteady 1D energy conservation equations were formulated for combined convection and conduction heat transfer, and solved numerically for charging/discharging cycles. Appropriate heat transfer and pressure drop correlations from prior literature were identified. A parametric study was done by varying the bed dimensions, fluid flow rate, particle diameter and porosity to evaluate the charging/discharging characteristics, overall thermal efficiency and capacity ratio of the system.


2001 ◽  
Author(s):  
Emmanuel C. Nsofor ◽  
George A. Adebiyi

Abstract Measurements of the gas-to-wall forced convection heat transfer coefficient in a packed bed, high-temperature, thermal energy storage system were carried out. The maximum temperature attained was 1000°C. Effects of media property variations with temperature were incorporated along with detailed uncertainty analysis. Results were correlated in terms of Nusselt number, Prandtl number and Reynolds number. The operating fluid during energy storage was flue gas and air during recovery, making this more applicable to industrial waste recovery and similar systems. Similar studies used air for both storage and recovery and developed correlations from experiments at either room temperature or slightly above. Few associated results with corresponding uncertainty margins. Due to substantial uncertainties associated with the measurements of this heat transfer coefficient, it is significant to note that no firm conclusions can be reached on the validity or otherwise of existing similar correlations for which the uncertainty margins were not reported.


Sign in / Sign up

Export Citation Format

Share Document