Investigation of a High-Temperature Packed-Bed Sensible Heat Thermal Energy Storage System With Large-Sized Elements

2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Sarada Kuravi ◽  
Jamie Trahan ◽  
Yogi Goswami ◽  
Chand Jotshi ◽  
Elias Stefanakos ◽  
...  

A high-temperature, sensible heat thermal energy storage (TES) system is designed for use in a central receiver concentrating solar power plant. Air is used as the heat transfer fluid and solid bricks made out of a high storage density material are used for storage. Experiments were performed using a laboratory-scale TES prototype system, and the results are presented. The air inlet temperature was varied between 300 °C to 600 °C, and the flow rate was varied from 50 cubic feet per minute (CFM) to 90 CFM. It was found that the charging time decreases with increase in mass flow rate. A 1D packed-bed model was used to simulate the thermal performance of the system and was validated with the experimental results. Unsteady 1D energy conservation equations were formulated for combined convection and conduction heat transfer and solved numerically for charging/discharging cycles. Appropriate heat transfer and pressure drop correlations from prior literature were identified. A parametric study was done by varying the bed dimensions, fluid flow rate, particle diameter, and porosity to evaluate the charging/discharging characteristics, overall thermal efficiency, and capacity ratio of the system.

Author(s):  
Sarada Kuravi ◽  
Jamie Trahan ◽  
Yogi Goswami ◽  
Chand Jotshi ◽  
Elias Stefanakos ◽  
...  

A high temperature sensible heat thermal energy storage (TES) system is designed for use in a central receiver concentrating solar power plant. Air is used as the heat transfer fluid and solid bricks made out of a high storage density material are used for storage. Experiments were performed using a laboratory scale TES prototype system and the results are presented. The air inlet temperature was varied between 300°C to 600°C and the flow rate was varied from 50 CFM to 90 CFM. It was found that the charging time decreases with increase in mass flow rate. A 1D packed bed model was used to simulate the thermal performance of the system and was validated with the experimental results. Unsteady 1D energy conservation equations were formulated for combined convection and conduction heat transfer, and solved numerically for charging/discharging cycles. Appropriate heat transfer and pressure drop correlations from prior literature were identified. A parametric study was done by varying the bed dimensions, fluid flow rate, particle diameter and porosity to evaluate the charging/discharging characteristics, overall thermal efficiency and capacity ratio of the system.


1996 ◽  
Vol 118 (1) ◽  
pp. 50-57 ◽  
Author(s):  
A. A. Jalalzadeh-Azar ◽  
W. G. Steele ◽  
G. A. Adebiyi

A model is developed and experimentally verified to study the heat transfer in a high-temperature packed bed thermal energy storage system utilizing zirconium oxide pellets. The packed bed receives flue gas at elevated temperatures varying with time during the storage process and utilizes air for the recovery process. Both convection and radiation are included in the model of the total heat transfer between the gas and the pellets. It is found that thermal radiation and intraparticle conduction do not play a major role in the overall heat transfer in the packed bed under the specified operating conditions. An uncertainty analysis is performed to investigate the propagation of the uncertainties in the variables to the overall uncertainty in the model predictions and the experimental results.


2019 ◽  
Vol 113 ◽  
pp. 01001
Author(s):  
Vasilis G. Gkoutzamanis ◽  
Justin N. W. Chiu ◽  
Guillaume Martin ◽  
Anestis I. Kalfas

The research in thermal energy storage (TES) systems has a long track record. However, there are several technical challenges that need to be overcome, to become omnipresent and reach their full potential. These include performance, physical size, weight and dynamic response. In many cases, it is also necessary to be able to achieve the foregoing at greater and greater scale, in terms of power and energy. One of the applications in which these challenges prevail is in the integration of a thermal energy storage with the gas turbine (GT) compressor inlet conditioning system in a combined cycle power plant. The system is intended to provide either GT cooling or heating, based on the operational strategy of the plant. As a contribution to tackle the preceding, this article describes a series of 3-dimensional (3D) numerical simulations, employing different Computational Fluid Dynamics (CFD) methods, to study the transient effects of inlet temperature and flow rate variation on the performance of an encapsulated TES with phase change materials (PCM). A sensitivity analysis is performed where the heat transfer fluid (HTF) temperature varies from -7°C to 20°C depending on the operating mode of the TES (charging or discharging). The flow rate ranges from 50% to 200% of the nominal inflow rate. Results show that all examined cases lead to instant thermal power above 100kWth. Moreover, increasing the flow rate leads to faster solidification and melting. The increment in each process depends on the driving temperature difference between the encapsulated PCM and the HTF inlet temperature. Lastly, the effect of the inlet temperature has a larger effect as compared to the mass flow rate on the efficiency of the heat transfer of the system.


2001 ◽  
Author(s):  
Emmanuel C. Nsofor ◽  
George A. Adebiyi

Abstract Measurements of the gas-to-wall forced convection heat transfer coefficient in a packed bed, high-temperature, thermal energy storage system were carried out. The maximum temperature attained was 1000°C. Effects of media property variations with temperature were incorporated along with detailed uncertainty analysis. Results were correlated in terms of Nusselt number, Prandtl number and Reynolds number. The operating fluid during energy storage was flue gas and air during recovery, making this more applicable to industrial waste recovery and similar systems. Similar studies used air for both storage and recovery and developed correlations from experiments at either room temperature or slightly above. Few associated results with corresponding uncertainty margins. Due to substantial uncertainties associated with the measurements of this heat transfer coefficient, it is significant to note that no firm conclusions can be reached on the validity or otherwise of existing similar correlations for which the uncertainty margins were not reported.


2016 ◽  
Author(s):  
Mitchell Shinn ◽  
Karthik Nithyanandam ◽  
Amey Barde ◽  
Richard Wirz

Currently, concentrated solar power (CSP) plants utilize thermal energy storage (TES) in order to store excess energy so that it can later be dispatched during periods of intermittency or during times of high energy demand. Elemental sulfur is a promising candidate storage fluid for high temperature TES systems due to its high thermal mass, moderate vapor pressure, high thermal stability, and low cost. The objective of this paper is to investigate the behavior of encapsulated sulfur in a shell and tube configuration. An experimentally validated, transient, two-dimensional numerical model of the shell and tube TES system is presented. Initial results from both experimental and numerical analysis show high heat transfer performance of sulfur. The numerical model is then used to analyze the dynamic response of the elemental sulfur based TES system for multiple charging and discharging cycles. A sensitivity analysis is performed to analyze the effect of geometry (system length), cutoff temperature, and heat transfer fluid on the overall utilization of energy stored within this system. Overall, this paper demonstrates a systematic parametric study of a novel low cost, high performance TES system based on elemental sulfur as the storage fluid that can be utilized for different high temperature applications.


2019 ◽  
Vol 3 (4) ◽  
pp. 88 ◽  
Author(s):  
Maria K. Koukou ◽  
George Dogkas ◽  
Michail Gr. Vrachopoulos ◽  
John Konstantaras ◽  
Christos Pagkalos ◽  
...  

A small-scale latent heat thermal energy storage (LHTES) unit for heating applications was studied experimentally using an organic phase change material (PCM). The unit comprised of a tank filled with the PCM, a staggered heat exchanger (HE) for transferring heat from and to the PCM, and a water pump to circulate water as a heat transfer fluid (HTF). The performance of the unit using the commercial organic paraffin A44 was studied in order to understand the thermal behavior of the system and the main parameters that influence heat transfer during the PCM melting and solidification processes. The latter will assist the design of a large-scale unit. The effect of flow rate was studied given that it significantly affects charging (melting) and discharging (solidification) processes. In addition, as organic PCMs have low thermal conductivity, the possible improvement of the PCM’s thermal behavior by means of nanoparticle addition was investigated. The obtained results were promising and showed that the use of graphite-based nanoplatelets improves the PCM thermal behavior. Charging was clearly faster and more efficient, while with the appropriate tuning of the HTF flow rate, an efficient discharging was accomplished.


2016 ◽  
Author(s):  
Qasim A. Ranjha ◽  
Nasser Vahedi ◽  
Alparslan Oztekin

Thermal energy storage by reversible gas-solid reaction has been selected as a thermochemical energy storage system. Simulations are conducted to investigate the dehydration of Ca(OH)2 and the hydration of CaO for thermal energy storage and retrieval, respectively. The rectangular packed bed is heated indirectly by air used as a heat transfer fluid (HTF) while the steam is transferred through the upper side of the bed. Transient mass transport and heat transfer equations coupled with chemical kinetics equations for a two dimensional geometry have been solved using finite element method. Numerical results have been validated by comparing against results of previous measurements and simulations. The effect of geometrical and operational parameters including the material properties on overall storage and retrieval process has been investigated. The co-current and counter-current flow arrangements for steam and heat transfer fluid have been considered.


Author(s):  
Matthew Golob ◽  
Sheldon Jeter ◽  
Said I. Abdel-Khalik ◽  
Dennis Sadowski ◽  
Hany Al-Ansary ◽  
...  

The advantages of high temperature central receiver particle heating solar heat supply systems in concentrator solar power (CSP) have been recognized in recent years. The use of particulate as the collection medium provides two critical advantages: (1) Ordinary particulate minerals and products will allow higher collection temperatures approaching 1000°C compared with conventional molten salts, which are limited to around 650°C, and (2) the low cost high temperature particulate material can also be used as the storage medium in a highly cost effective thermal energy storage (TES) system. The high operating temperature allows use of high efficiency power conversion systems such as supercritical steam in a vapor power cycle or supercritical carbon dioxide in a Brayton cycle. Alternatively, a lower cost gas turbine can be used for the power conversion system. High conversion efficiency combined with inexpensive TES will yield a highly cost effective CSP system. The 300 kW-th prototype is being constructed as a solar heat supply system only, deferring the power conversion system for later demonstration in a larger integrated CSP system. This paper describes the general design and development efforts leading to construction of the 300 kW prototype system located in the Riyadh Techno Valley development near King Saud University in Riyadh, Saudi Arabia, which is the first sizeable solar heat supply system purposely designed, and constructed as a particle heating system. An important component in a particle heating system is the particle heating receiver (PHR), which should be durable and efficient while remaining cost-effective. A critical enabling technology of the PHR being implemented for this project was invented by researchers on our team. In our version of the PHR, the particulate flows downwards through a porous or mesh structure where the concentrated solar energy is absorbed. The porous structure will reduce the speed of the falling particulate material allowing a large temperature rise on a single pass. The new design will also increase the absorption of solar energy and mitigate convective heat loss and particle loss. Other innovative aspects of this design include low cost thermal energy storage bins and a cost effective particle to working fluid heat exchanger. Certain features of these design elements are subjects of ongoing patent applications. Nevertheless, the overall design and the development process of the prototype system is presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document