Quaternary ammonium chitosan/polyvinyl alcohol composites prepared by electrospinning with high antibacterial properties and filtration efficiency

2019 ◽  
Vol 54 (19) ◽  
pp. 12522-12532 ◽  
Author(s):  
Chenrong Wang ◽  
Ji Fan ◽  
Rui Xu ◽  
Lishan Zhang ◽  
Shan Zhong ◽  
...  
Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3109 ◽  
Author(s):  
Andres Bernal-Ballen ◽  
Jorge Lopez-Garcia ◽  
Martha-Andrea Merchan-Merchan ◽  
Marian Lehocky

Bio-artificial polymeric systems are a new class of polymeric constituents based on blends of synthetic and natural polymers, designed with the purpose of producing new materials that exhibit enhanced properties with respect to the individual components. In this frame, a combination of polyvinyl alcohol (PVA) and chitosan, blended with a widely used antibiotic, sodium ampicillin, has been developed showing a moderate behavior in terms of antibacterial properties. Thus, aqueous solutions of PVA at 1 wt.% were mixed with acid solutions of chitosan at 1 wt.%, followed by adding ampicillin ranging from 0.3 to 1.0 wt.% related to the total amount of the polymers. The prepared bio-artificial polymeric system was characterized by FTIR, SEM, DSC, contact angle measurements, antibacterial activity against Staphylococcus aureus and Escherichia coli and antibiotic release studies. The statistical significance of the antibacterial activity was determined using a multifactorial analysis of variance with ρ < 0.05 (ANOVA). The characterization techniques did not show alterations in the ampicillin structure and the interactions with polymers were limited to intermolecular forces. Therefore, the antibiotic was efficiently released from the matrix and its antibacterial activity was preserved. The system disclosed moderate antibacterial activity against bacterial strains without adding a high antibiotic concentration. The findings of this study suggest that the system may be effective against healthcare-associated infections, a promising view in the design of novel antimicrobial biomaterials potentially suitable for tissue engineering applications.


Author(s):  
Thamrin Wikanta ◽  
Mr Erizal ◽  
Mr Tjahyono ◽  
Mr Sugiyono

The aim of this research was to synthesize a hydrogel for wound dressing by mixing of polyvinyl alcohol (PVA) and chitosan (CTS) and processed by combination technique of freezing-thawing and irradiation by gamma ray, and to study of its properties. PVA aqueous solution 10% (w/v) was mixed with 2% (w/v) chitosan (CTS) solution and homogenized. The PVA-CTS mixture was processed by freezing-thawing up to 3 cycles, and then irradiated by gamma rays at the doseranged of 20-50 kGy  (dose rate was 10 kGy/hour). Result showed that PVA-CTS hydrogel with the gel fraction of 83%, 87%, 90%, and 83% were obtained at the irradiation dose of 20 kGy, 30 kGy, 40 kGy, and 50 kGy, respectively. Increasing of irradiation dose caused increasing of water absorption of hydrogel, i.e. 1.700 %, 1.715 %, 1.913 %, and 2.036 %, respectively, and the hydrogel reached the equilibrium in 25 hours. The hydrogel showed very slow water evaporation rate (~ 2%) at the initial time (1 hour) and then increased very fast (up ~50 %) at 24 h, i.e. 43%, 39.13%, 44%, and 53%, respectively. The elongation at break of hydrogels were obtained 245%, 322%, 322%, and 205% with the maximum value were obtained at irradiation dose ranged of 30-40 kGy. The presence of chitosan in the PVA hydrogel made it having higher antibacterial properties with the inhibitionzone value of 8 mm at irradiation dose of 30-40 kGy compared to PVA hydrogel as a negative control (6 mm) and to chloramphenicol as a positive control (8 mm).


Sign in / Sign up

Export Citation Format

Share Document