pva hydrogel
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 83)

H-INDEX

30
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Md. Shamsul Alam ◽  
Md. Sabbir Hasan ◽  
Jannat Al Foisal ◽  
G. M. Arifuzzaman Khan ◽  
Rownok Jahan ◽  
...  

Abstract Modification of cellulose with silver nanoparticles produces various nanocomposites with significantly developed properties. This work aims to prepare a PVA hydrogel modified with cellulose/silver nanocomposites having potential applications in various fields including biomedical, antimicrobial inhibition, textile wears, etc. Microfibrillated cellulose/silver nanocomposites hydrogels were prepared in the aqueous medium with aid of microwave-assisted heating. Different percentages of nanocomposites were incorporated in PVA hydrogel to enhance the properties of PVA hydrogel. Prepared products were characterized by UV-Visible spectroscopy, FTIR, TGA, XRD, and SEM. The swelling (in water saline, acidic and alkaline solution), tensile, thermal, and antibacterial properties were also examined. The formation of Ag nanoparticles (AgNPs) in the (MFC-Ag) NC was confirmed by XRD and UV–Vis spectra. UV–Vis spectra showed the characteristic peaks of Ag in the UV–Vis spectra at 425 nm. Final products exhibited significant porosity and maximum swelling of 519.44%. The thermal stability of hydrogel increased with an increased percentage of (MFC-Ag)NC. Hydrogels exhibited significant antimicrobial inhibition against multidrug-resistant microorganisms, including Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa.


2022 ◽  
Author(s):  
Yan Li ◽  
Miao-miao Han ◽  
Yue Cai ◽  
Bing Jiang ◽  
Yuanxin Zhang ◽  
...  

The process of wound healing is often accompanied by bacterial infection, which is a serious threat to human health. The abuse of antibiotics in traditional therapy aggravates the resistance of...


2021 ◽  
Vol 2110 (1) ◽  
pp. 012013
Author(s):  
N L F Chamidah ◽  
A B Rahanti ◽  
M D Kadasih ◽  
F D Sharfina ◽  
L Rohmawati

Abstract Wound plasters on the market still have drawbacks, including lack of elasticity and stinging. Thus, there is a need for new materials from nature to be used as the base material for wound plasters, namely betel leaf extract and honey composited with PVA/chitosan. This study purpose to find out mechanical properties of wound plaster of chitosan/PVA with the composition of betel leaf extract and honey. The first stage is making hydrogel by mixing PVA and chitosan, and the second stage is extracting green betel leaves and honey by the maceration method. Then the two stages were mixed with a composition of 5wt%, 15wt%, and 25wt% green betel leaf extract. The results were tested for tensile strength to determine the elasticity properties of the wound plaster. In this study, the 25wt% betel leaf extract concentration had the best tensile strength value of 0.219 MPa, and the modulus of elasticity was 0.11 MPa.


2021 ◽  
pp. 2100783
Author(s):  
Sajad Abolpour Moshizi ◽  
Hamed Moradi ◽  
Shuying Wu ◽  
Zhao Jun Han ◽  
Amir Razmjou ◽  
...  

2021 ◽  
pp. 036354652110336
Author(s):  
Marta Cercone ◽  
Jacqueline Chevalier ◽  
John G. Kennedy ◽  
Andrew D. Miller ◽  
Lisa A. Fortier

Background: Hemiarthroplasty using a polyvinyl alcohol (PVA) hydrogel synthetic implant has been suggested as a good alternative to arthrodesis for the treatment of hallux rigidus. However, failure rates as high as 20% have been recorded. Purpose: To characterize the pathological processes in bone, cartilage, and the synovial membrane after PVA hemiarthroplasty in an ovine model with 6 months of follow-up. Study Design: Controlled laboratory study. Methods: A unilateral osteochondral defect (8-mm diameter × 10-mm depth) was made in the medial femoral condyle in 6 sheep. Animals were randomized to receive a PVA implant (n = 4) or to have an empty defect (n = 2) and were monitored for 6 months. Patellofemoral radiographs were obtained at monthly intervals, and quantitative computed tomography was performed at the end of the study. After death, the joints were macroscopically evaluated and scored. Osteochondral and synovial membrane histological findings were assessed using modified Osteoarthritis Research Society International (OARSI) and aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) scoring systems. Immunohistochemistry using Iba1 was performed to evaluate activated macrophage infiltration. Results: Overall, 2 sheep with PVA implants were euthanized at 1 and 5 months because of uncontrollable pain and lameness (failed implants). Quantitative computed tomography showed that sheep with failed implants had 2.1-fold more osteolysis than those with successful implants. The sheep with failed implants had osteoarthritis with extensive glycosaminoglycan loss and cartilage fibrillation of the condyle and opposing tibial surface on histological examination. A foreign body reaction with severe chronic lymphoplasmacytic and granulomatous inflammation with giant cells was detected surrounding the implant. The synovial membrane ALVAL score was 9 of 19 and 14 of 19 in failed implants with synovial hyperplasia and lymphoplasmacytic and macrophage infiltration. In contrast, the synovial membrane in successful implants and empty defects was normal (ALVAL score = 0/19). Immunolabeling for Iba1 in failed implants confirmed extensive and dense macrophage infiltration within the condyle and synovial membrane, with the highest immunoreactive score (9/9). Conclusion: PVA hydrogel implants had a 50% failure rate with uncontrollable pain, severe osteolysis, inflammation, and foreign body reactions. Clinical Relevance: The failure rate and pathological characteristics of the PVA implants suggest that their use should not be continued in human patients without further in vivo safety studies.


Sign in / Sign up

Export Citation Format

Share Document