Effects of Pb doping on the electrical transport performance of Cu1.98Se

2019 ◽  
Vol 55 (7) ◽  
pp. 2905-2912
Author(s):  
Hanyang Li ◽  
Xueli Du ◽  
Lei Cao ◽  
Xiaohui Guo ◽  
Zhihao Yuan
2013 ◽  
Vol 102 (2) ◽  
pp. 023902 ◽  
Author(s):  
Lin Pan ◽  
David Bérardan ◽  
Lidong Zhao ◽  
Céline Barreteau ◽  
Nita Dragoe

1980 ◽  
Vol 41 (C8) ◽  
pp. C8-477-C8-480
Author(s):  
G. Marchal ◽  
J. F. Geny ◽  
Ph. Mangin ◽  
Chr. Janot

2019 ◽  
Author(s):  
Mingguang Chen ◽  
Wangxiang Li ◽  
Anshuman Kumar ◽  
Guanghui Li ◽  
Mikhail Itkis ◽  
...  

<p>Interconnecting the surfaces of nanomaterials without compromising their outstanding mechanical, thermal, and electronic properties is critical in the design of advanced bulk structures that still preserve the novel properties of their nanoscale constituents. As such, bridging the p-conjugated carbon surfaces of single-walled carbon nanotubes (SWNTs) has special implications in next-generation electronics. This study presents a rational path towards improvement of the electrical transport in aligned semiconducting SWNT films by deposition of metal atoms. The formation of conducting Cr-mediated pathways between the parallel SWNTs increases the transverse (intertube) conductance, while having negligible effect on the parallel (intratube) transport. In contrast, doping with Li has a predominant effect on the intratube electrical transport of aligned SWNT films. Large-scale first-principles calculations of electrical transport on aligned SWNTs show good agreement with the experimental electrical measurements and provide insight into the changes that different metal atoms exert on the density of states near the Fermi level of the SWNTs and the formation of transport channels. </p>


2021 ◽  
Vol 127 (5) ◽  
Author(s):  
Afroz Khan ◽  
F. Rahman ◽  
Razia Nongjai ◽  
K. Asokan

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4439
Author(s):  
Shui-Yang Lien ◽  
Yu-Hao Chen ◽  
Wen-Ray Chen ◽  
Chuan-Hsi Liu ◽  
Chien-Jung Huang

In this study, adding CsPbI3 quantum dots to organic perovskite methylamine lead triiodide (CH3NH3PbI3) to form a doped perovskite film filmed by different temperatures was found to effectively reduce the formation of unsaturated metal Pb. Doping a small amount of CsPbI3 quantum dots could enhance thermal stability and improve surface defects. The electron mobility of the doped film was 2.5 times higher than the pristine film. This was a major breakthrough for inorganic quantum dot doped organic perovskite thin films.


Sign in / Sign up

Export Citation Format

Share Document