Characterization of surface roughness of Pt Schottky contacts on quaternary n-Al0.08In0.08Ga0.84N thin film assessed by atomic force microscopy and fractal analysis

2013 ◽  
Vol 25 (1) ◽  
pp. 466-477 ◽  
Author(s):  
Ştefan Ţălu ◽  
Alaa J. Ghazai ◽  
Sebastian Stach ◽  
Abu Hassan ◽  
Zainuriah Hassan ◽  
...  
2014 ◽  
Vol 13 (03) ◽  
pp. 1450020 ◽  
Author(s):  
Ştefan Ţălu ◽  
Sebastian Stach ◽  
Muhammad Ikram ◽  
Dinesh Pathak ◽  
Tomas Wagner ◽  
...  

The objective of this work is to quantitatively characterize the 3D complexity of ZnO : TiO 2-organic blended solar cells layers by atomic force microscopy and fractal analysis. ZnO : TiO 2-organic blended solar cells layers were investigated by AFM in tapping-mode in air, on square areas of 25 μm2. A detailed methodology for ZnO : TiO 2-organic blended solar cells layers surface fractal characterization, which may be applied for AFM data, is presented. Detailed surface characterization of the surface topography was obtained using statistical parameters, according with ISO 25178-2: 2012. The fractal dimensions Df values (all with average ± standard deviation), obtained with morphological envelopes method, for: blend D1 ( P 3 HT : PCBM : ZnO : TiO 2 blend with ratio 1:0.35:0.175:0.175 mg in 1 ml of Chlorobenzene) is Df = 2.55 ± 0.01; and for blend D2 ( P 3 HT : PCBM : ZnO : TiO 2 blend with ratio 1:0.55:0.075:0.075 mg in 1 ml of Chlorobenzene) is Df = 2.45 ± 0.01. Denoting the ratios in 1 ml of Chlorobenzene with D1 and D2 articles. The 3D surface roughness of samples revealed a fractal structure at nanometer scale. Fractal and AFM analysis may assist manufacturers in developing ZnO : TiO 2-organic blended solar cells layers with better surface characteristics and provides different yet complementary information to that offered by traditional surface statistical parameters.


2010 ◽  
Vol 16 (5) ◽  
pp. 531-536 ◽  
Author(s):  
Verónica Zavala-Alonso ◽  
Gabriel A. Martínez-Castanon ◽  
Nuria Patiño-Marín ◽  
Humberto Terrones ◽  
Kenneth Anusavice ◽  
...  

AbstractThe aim was to characterize the external structure, roughness, and absolute depth profile (ADP) of fluorotic enamel compared with healthy enamel. Eighty extracted human molars were classified into four groups [TFI: 0, control (C); 1–3, mild (MI); 4–5, moderate (MO); 6–9, severe fluorosis (S)] according to the Thylstrup-Fejerskov Index (TFI). All samples were analyzed by atomic force microscopy.The mean values of enamel surface roughness (ESR) in nm were: Group C, 92.6; Group MI, 188.8; Group MO, 246.9; and Group S, 532.2. The mean values of absolute depth profile in nm were: C, 1,065.7; MI, 2,360.7; MO, 2,536.7; and S, 6,146.2. The differences between mean ESR and mean ADP among groups were statistically significant (p < 0.05). This structural study confirms at the nanometer level that there is a positive association between fluorosis severity, ESR, and ADP, and there is an association with the clinical findings of fluorosis measured by TFI as well.


2011 ◽  
Vol 11 (2) ◽  
pp. 1413-1416 ◽  
Author(s):  
Soo-Hyon Phark ◽  
Hogyoung Kim ◽  
Keun Man Song ◽  
Phil Geun Kang ◽  
Heung Soo Shin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document