Investigation, characterization and effect of substrate position on thick AlN layers grown by high temperature chemical vapor deposition

2014 ◽  
Vol 26 (2) ◽  
pp. 1239-1245 ◽  
Author(s):  
Dian Zhang ◽  
Fa-Min Liu ◽  
Lu-Gang Cai
2001 ◽  
Vol 689 ◽  
Author(s):  
Shara S. Shoup ◽  
Marvis K. White ◽  
Steve L. Krebs ◽  
Natalie Darnell ◽  
Adam C. King ◽  
...  

ABSTRACTThe innovative Combustion Chemical Vapor Deposition (CCVD) process is a non-vacuum technique that is being investigated to enable next generation products in several application areas including high-temperature superconductors (HTS). In combination with the Rolling Assisted Biaxially Textured Substrate (RABiTS) technology, the CCVD process has significant promise to provide low-cost, high-quality lengths of YBCO coated conductor. The CCVD technology has been used to deposit both buffer layer coatings as well as YBCO superconducting layers. A buffer layer architecture of strontium titanate and ceria have been deposited by CCVD on textured nickel substrates and optimized to appropriate thicknesses and microstructures to provide templates for growing PLD YBCO with high critical current density values. The CCVD buffer layers have been scaled to meter plus lengths with good epitaxial uniformity along the length. A short sample cut from one of the lengths enabled high critical current density PLD YBCO. Films of CCVD YBCO superconductors have been grown on single crystal substrates with critical current densities over 1 MA/cm2. Work is currently in progress to combine both the buffer layer and superconductor technologies to produce high-quality coupons of HTS tape made entirely by the non-vacuum CCVD process.


1996 ◽  
Vol 69 (10) ◽  
pp. 1456-1458 ◽  
Author(s):  
O. Kordina ◽  
C. Hallin ◽  
A. Ellison ◽  
A. S. Bakin ◽  
I. G. Ivanov ◽  
...  

1994 ◽  
Vol 363 ◽  
Author(s):  
Paul S. Bowen ◽  
Steve K. Phelps ◽  
Harry I. Ringermacher ◽  
Richard D. Veltri

AbstractThe chemical vapor deposition of silicon nitride can be used to protect advanced materials and composites from high temperature, corrosive, and oxidative environments. Desired coating characteristics, such as uniformity and morphology, cannot be measured in-situ by traditional sensors due to the adverse conditions within the high-temperature reactor. A control strategy has been developed which utilizes a process model and an advanced laser-based sensor to measure the deposition rate of the silicon nitride coating in real-time. The control system is based on a three level hierarchical architecture which functionally separates the process control into PID, supervisory and advanced sensor-based control. Optimal setpoint schedules for the supervisory level are derived from a quasi-fuzzy logic inverse mapping of the process model. An advanced sensor utilizing laser ultrasonics provides real-time coating thickness estimates. Model bias is characterized for each reactor and is correlated on-line with the sensor's deposit thickness estimate. Deviations from model predictions may result in parametric changes to the process model. New setpoint schedules are then created as input to the supervisory control level by regenerating the inverse map of the updated process model.


2016 ◽  
Vol 119 (14) ◽  
pp. 145702 ◽  
Author(s):  
Pramod Reddy ◽  
Shun Washiyama ◽  
Felix Kaess ◽  
M. Hayden Breckenridge ◽  
Luis H. Hernandez-Balderrama ◽  
...  

2014 ◽  
Vol 116 (5) ◽  
pp. 054507 ◽  
Author(s):  
Saskia Kühnhold ◽  
Pierre Saint-Cast ◽  
Bishal Kafle ◽  
Marc Hofmann ◽  
Francesco Colonna ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document