metalorganic chemical vapor deposition
Recently Published Documents


TOTAL DOCUMENTS

2937
(FIVE YEARS 71)

H-INDEX

89
(FIVE YEARS 5)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7573
Author(s):  
Agata Sawka

This paper shows the results of an investigation on the synthesis of non-porous and nanocrystalline ZrO2-Gd2O3 layers by metalorganic chemical vapor deposition (MOCVD) with the use of Zr(tmhd)4 (tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato)zirconium(IV)) and Gd(tmhd)3 (tris(2,2,6,6-tetramethyl-3,5-heptanedionato)gadolinium(III)). Argon and air were used as carrier gases. The molar content of Gd(tmhd)3 in the gas reaction mixture was as follows: 10% and 20%. The layers were synthesized on tubular substrates made of quartz glass at the temperatures of 550–700 °C. Synthesis conditions were established using the Grx/Rex2 expression (Gr is the Grashof number; Re is the Reynolds number; x is the distance from the gas inflow point). The value of this criterion was below 0.01. ZrO2-Gd2O3 layers synthesized at 600–700 °C were crystalline. When the molar content of Gd(tmhd)3 in the gas reaction mixture was 10 mol.%, a relationship between the chemical composition of the gas reaction mixture and that of the deposited layer could be observed. The synthesized layers underwent scanning electron microscopy, as well as X-ray analysis. The transparency of coated and uncoated glass was tested using UV–Vis spectroscopy. Their chemical composition was examined with the use of an EDS analyzer.


APL Materials ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 101109
Author(s):  
A F M Anhar Uddin Bhuiyan ◽  
Zixuan Feng ◽  
Hsien-Lien Huang ◽  
Lingyu Meng ◽  
Jinwoo Hwang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5339
Author(s):  
Lian Zhang ◽  
Rong Wang ◽  
Zhe Liu ◽  
Zhe Cheng ◽  
Xiaodong Tong ◽  
...  

This work studied the regulation of hole concentration and mobility in p-InGaN layers grown by metalorganic chemical vapor deposition (MOCVD) under an N-rich environment. By adjusting the growth temperature, the hole concentration can be controlled between 6 × 1017/cm3 and 3 × 1019/cm3 with adjustable hole mobility from 3 to 16 cm2/V.s. These p-InGaN layers can meet different requirements of devices for hole concentration and mobility. First-principles defect calculations indicate that the p-type doping of InGaN at the N-rich limiting condition mainly originated from Mg substituting In (MgIn). In contrast with the compensation of nitrogen vacancy in p-type InGaN grown in a Ga-rich environment, the holes in p-type InGaN grown in an N-rich environment were mainly compensated by interstitial Mg (Mgi), which has very low formation energy.


Sign in / Sign up

Export Citation Format

Share Document