Synthesis of Ag-doped PbTiO3 nanoparticles: feasibility study of its decolorization of simulated methyl orange dye wastewater

2016 ◽  
Vol 27 (8) ◽  
pp. 8613-8618 ◽  
Author(s):  
Abdullah Taheri Tizro ◽  
Morteza Kamali
2014 ◽  
Vol 522-524 ◽  
pp. 420-423
Author(s):  
Hong Duan Xie ◽  
Cong Su ◽  
Chun Yu Wang ◽  
Li Duo Wang ◽  
Sheng Hou Liu ◽  
...  

The decolorization of methyl orange wastewater by DC stream discharge with MgO-CuO-Al2O3 catalyst was investigated. The removal efficiency was studied for different experimental parameters. Results showed that the removal efficiency by discharge with catalyst was better than discharge only. The removal efficiency was 98% under the condition of applied voltage 18kV, current 9mA, volume of catalyst 20cm3, initial concentration 40mg/L with treatment for 10min. The intensity of methyl orange absorption peak (465nm) gradually weakened and disappeared by discharge with catalyst, the conjugated system composed of azo group and benzene in the molecular structure was destroyed, methyl orange molecules were degraded effectively.


2021 ◽  
Vol 267 ◽  
pp. 02020
Author(s):  
Yanping Qu ◽  
Dongqing Yan ◽  
Rushuang Su ◽  
Wenshuo Hu ◽  
Yanyan Dai

Used fly ash as raw material, it was modified by acid, alkali and high temperature to produce modified fly ash adsorbent, sulfuric acid modified fly ash adsorbent, sodium hydroxide modified fly ash adsorbent and high temperature modified fly ash adsorbent. In this paper, the effects of adsorbent dosage, adsorbent adsorption time, initial dye concentration, wastewater pH and temperature on dye adsorption were studied. The results showed that: the acid modified fly ash adsorbent had a good treatment effect on the dye; when the dosage of fly ash was 1.00 g, the adsorption time was 90 min, the pH of wastewater was 4, and the temperature was 45 °C, the decolorization rate of 60 mg/L methyl orange dye can reached more than 70%; when the dosage of fly ash was 0.20 g, the adsorption time was 60 min, the pH of wastewater was 3, and the temperature was 35 °C, the decolorization rate of 20 mg/L methyl orange dye can be achieved. The decolorization rate of Congo red can reached more than 80%.


2018 ◽  
Vol 3 (2) ◽  
pp. 172-178 ◽  
Author(s):  
Yiqing Wang ◽  
Mingyuan Zhu ◽  
Yingchun Li ◽  
Mengjuan Zhang ◽  
Xueyan Xue ◽  
...  

2020 ◽  
Vol 16 ◽  
Author(s):  
Nimisha Jadon ◽  
Gulzar Ahmad Bhat ◽  
Manoharmayum Vishwanath Sharma ◽  
Harendra Kumar Sharma

Background: The study focuses on the synthesis of chitosan/ Fe2O3 nanocomposite, its characterization and application in methyl orange dye degradation. Methods: The synthesized chitosan/ Fe2O3 nanocomposite was characterized with Powder X-Ray Diffraction, Fourier Transformation Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and UV-Vis Spectroscopy. Results: The characterization showed that the Fe2O3nanoparticles were embedded in the polymer matrix of chitosan. The size of the Fe2O3nanoparticles were less than 10nm and the crystallite size was 1.22 nm.The synthesized chitosan/ Fe2O3nanocomposite was tested for methyl orange degradation using different parameters such as effect of contact time, effect of dose, effect of concentration and effect of pH for the degradation of methyl orange dye in aqueous solution.The Fruendlich, Langmuir and Temkin isotherm studies were also conducted for adsoption of methyl orange on Chitosan/ Fe2O3nanocomposite. Conclusion: The study indicated that the synthesized chitosan/Fe2O3 nanocomposite had the potential of degrading methyl orange dye up to 75.04% under the set condition in this experiment which indicate that Chitosan/ Fe2O3 nanocomposite is a viable option that can be used for the degradation of methyl orange dye.


2020 ◽  
Vol 18 (1) ◽  
pp. 129-137
Author(s):  
Yayuk Astuti ◽  
Rizka Andianingrum ◽  
Abdul Haris ◽  
Adi Darmawan ◽  

AbstractSynthesis of bismuth oxide synthesis through the precipitation method using H2C2O4 and Na2CO3 precipitating agents, identification of physicochemical properties and its photocatalysis activity for methyl orange degradation were conducted. The bismuth oxide synthesis was undertaken by dissolving Bi(NO3)3.5H2O in HNO3, then added precipitating agents to form precipitate. The results showed that bismuth oxide produced by H2C2O4 precipitating agent was a yellow powder containing a mixture of α-Bi2O3 (monoclinic) and β-Bi2O3 (tetragonal), porous with size of 28-85 μm. Meanwhile, the use of Na2CO3 as precipitating agent resulted in bismuth oxide consisting of α-Bi2O3 and β-Bi2O3 and Bi2O4, irregular shape without pore being 40-115 μm in size. Bismuth oxide synthesized with H2C2O4 precipitating agent showed higher photocatalytic activity compared to bismuth oxide synthesized using Na2CO3 on degrading methyl orange dye with degradation rate constants of 2.35x10-5 s-1 for H2C2O4 and 1.81x10-5 s-1 for Na2CO3.


Sign in / Sign up

Export Citation Format

Share Document