Investigation of Ni influence on structural and band gap tuning of Zn0.98Mn0.02S quantum dots by co-precipitation method

2017 ◽  
Vol 28 (11) ◽  
pp. 8309-8315 ◽  
Author(s):  
P. Sakthivel ◽  
S. Muthukumaran
2019 ◽  
Vol 6 (11) ◽  
pp. 115908 ◽  
Author(s):  
Yun Zhao ◽  
Wei Li

2011 ◽  
Vol 7 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Sheo K. Mishra ◽  
Rajneesh K. Srivastava ◽  
S. G. Prakash ◽  
Raghvendra S. Yadav ◽  
A. C. Panday

2016 ◽  
Vol 452 ◽  
pp. 40-44 ◽  
Author(s):  
Jing Wang ◽  
Chao Liu ◽  
Wonji Park ◽  
Jong Heo

2015 ◽  
Vol 3 (12) ◽  
pp. 2831-2836 ◽  
Author(s):  
Yajing Chang ◽  
Xudong Yao ◽  
Zhongping Zhang ◽  
Danlu Jiang ◽  
Yalan Yu ◽  
...  

For the first time, colloidal CdTe quantum dots are incorporated into an inorganic matrix, BaSO4, through a co-precipitation method.


2021 ◽  
Author(s):  
N. S. Anad ◽  
Zakaria M Abd El-Fattah ◽  
M. Attallah ◽  
Hanaa M. Ahmed ◽  
Mohammed M. El-Okr ◽  
...  

Abstract Pristine and chromium-doped ZnO nanowires were prepared following the traditional co-precipitation method. X-ray diffraction data identified a pure wurtzite hexagonal crystal structure characteristic for ZnO, irrespective of the doping level. The particle size, as deduced form Williamson–Hall plots, was found to be 45-55 nm for all samples. Scanning electron microscopy revealed a clear nanowires morphology for the pure and doped samples, while elemental analysis ensured the successful Cr-doping. Distinct spectroscopic signatures of Cr-doping were revealed from a detailed deconvolution process applied to optical spectra of doped samples, where Cr 3+ optical transitions were unambiguously identified at ~420 and ~665 nm. Particularly relevant, is the spectral decomposition here performed for the superimposed absorption edge (~385 nm) and Cr 3+ optical resonance at ~420 nm, allowing to claim practically doping-independent optical band gap behavior in the present doping regime. This is further supported by identifying the characteristic ZnO near edge photoluminescence peak (~ 392 nm) which maintains fixed wavelength after Cr-doping. These findings contrast earlier studies on Cr-doped semiconductor nanoparticles and glass systems where the optical band gap has been largely underestimated. We attribute the inconsistence band gap values reported in literature for Cr-doped semiconductors to the proximity of Cr optical transitions to the semiconductor absorption edge.


2014 ◽  
Vol 1033-1034 ◽  
pp. 1172-1175
Author(s):  
Li Ping Lin ◽  
Feng Hua Huang ◽  
Pei Feng Chen

The water-soluble ZnSe:Ag quantum dots were synthesized in aqueous medium by chemical co-precipitation method with L-cysteine as surface modifier. The crystal structure and optical properties of the obtained ZnSe:Ag quantum dots have been characterized by X-ray power diffraction, infrared spectrum, UV-Vis absorption spectrum and photoluminescence spectrum. Results indicate that ZnSe:Ag quantum dots belong to the cubic blende structure and have good fluorescent characteristics. The L-cysteine modified on the surface of ZnSe:Ag quantum dots renders the quantum dots water-soluble, biocompatible.


2020 ◽  
Vol 1159 ◽  
pp. 60-66
Author(s):  
J.R. Sheeba ◽  
Sathasivam Radhika ◽  
C.M. Padma

Pure and copper doped tin oxide nanoparticles were synthesized by co-precipitation method and are characterized by XRD, SEM, EDAX, UV-Visible, photoluminescence, and FT-IR analysis techniques. Tetragonal rutile structure is confirmed from XRD and the crystallite size is found to be between 3.8nm and 4.8nm. The optical band gap is observed from UV-Vis spectrum and is found to be 3.99eV and 3.93eV for tin oxide and copper doped tin oxide respectively. The optical band gap of pure and Copper doped tin oxide were blue shifted due to quantum confinement. Photoluminescence spectrum shows UV, blue and green emission peaks.


2021 ◽  
Author(s):  
Hariventhan Ragupathi ◽  
Youngson Choe ◽  
Antony Arockiaraj M.

The aim of this study was to screen and determine the significant antibacterial/antiviral activities of surface-modified ZnO@MPS QDs owing to their impressive activities against microorganisms.


Sign in / Sign up

Export Citation Format

Share Document