Pure and (Er, Al) co-doped ZnO nanoparticles: synthesis, characterization, magnetic and photocatalytic properties

2018 ◽  
Vol 29 (12) ◽  
pp. 10677-10685 ◽  
Author(s):  
R. Ghomri ◽  
M. Nasiruzzaman Shaikh ◽  
M. I. Ahmed ◽  
W. Song ◽  
W. Cai ◽  
...  
2020 ◽  
Vol 16 (4) ◽  
pp. 655-666
Author(s):  
Mona Rekaby

Objective: The influence of Manganese (Mn2+) and Cobalt (Co2+) ions doping on the optical and magnetic properties of ZnO nanoparticles was studied. Methods: Nanoparticle samples of type ZnO, Zn0.97Mn0.03O, Zn0.96Mn0.03Co0.01O, Zn0.95Mn0.03 Co0.02O, Zn0.93Mn0.03Co0.04O, and Zn0.91Mn0.03Co0.06O were synthesized using the wet chemical coprecipitation method. Results: X-ray powder diffraction (XRD) patterns revealed that the prepared samples exhibited a single phase of hexagonal wurtzite structure without any existence of secondary phases. Transmission electron microscope (TEM) images clarified that Co doping at high concentrations has the ability to alter the morphologies of the samples from spherical shaped nanoparticles (NPS) to nanorods (NRs) shaped particles. The different vibrational modes of the prepared samples were analyzed through Fourier transform infrared (FTIR) measurements. The optical characteristics and structural defects of the samples were studied through Photoluminescence (PL) spectroscopy. PL results clarified that Mn2+ and Co2+ doping quenched the recombination of electron-hole pairs and enhanced the number of point defects relative to the undoped ZnO sample. Magnetic measurements were carried out at room temperature using a vibrating sample magnetometer (VSM). (Mn, Co) co-doped ZnO samples exhibited a ferromagnetic behavior coupled with paramagnetic and weak diamagnetic contributions. Conclusion: Mn2+ and Co2+ doping enhanced the room temperature Ferromagnetic (RTFM) behavior of ZnO. In addition, the signature for antiferromagnetic ordering between the Co ions was revealed. Moreover, a strong correlation between the magnetic and optical behavior of the (Mn, Co) co-doped ZnO was analyzed.


Vacuum ◽  
2021 ◽  
pp. 110488
Author(s):  
Huying Yan ◽  
Jian Xue ◽  
Wenjing Chen ◽  
Jialing Tang ◽  
Ling zhong ◽  
...  

2012 ◽  
Vol 52 (6) ◽  
pp. 1171-1177 ◽  
Author(s):  
Huilian Liu ◽  
Xin Cheng ◽  
Hongbo Liu ◽  
Jinghai Yang ◽  
Yang Liu ◽  
...  
Keyword(s):  

2005 ◽  
Vol 97 (10) ◽  
pp. 10D311 ◽  
Author(s):  
B. Martínez ◽  
F. Sandiumenge ◽  
Ll. Balcells ◽  
J. Fontcuberta ◽  
F. Sibieude ◽  
...  

2019 ◽  
Vol 97 (3) ◽  
pp. 227-232 ◽  
Author(s):  
Ye Zhao ◽  
Fan Tong ◽  
Mao Hua Wang

Pure and cobalt-doped ZnO nanoparticles (2.5, 5, 7.5, and 10 atom % Co) are synthesized by sol–gel method. The as-synthesized nanoparticles are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM) analysis. The nanoparticles of 0, 2.5, and 5 atom % Co-doped ZnO exhibited hexagonal wurtzite structure and have no other phases. Moreover, the (101) diffraction peaks position of Co-doped ZnO shift toward a smaller value of diffraction angle compared with pure ZnO powders. The results confirm that Co ions were well incorporated into ZnO crystal lattice. Simultaneously, Co doping also inhibited the growth of particles, and the crystallite size decreased from 43.11 nm to 36.63 nm with the increase in doping concentration from 0 to 10 atom %. The values of the optical band gap of all Co-doped ZnO nanoparticles gradually decreased from 3.09 eV to 2.66 eV with increasing Co content. Particular, the dielectric constant of all Co-doped ZnO ceramics gradually increased from 1.62 × 103 to 20.52 × 103, and the dielectric loss decreased from 2.36 to 1.28 when Co content increased from 0 to 10 atom %.


2018 ◽  
Vol 4 (4) ◽  
pp. 135-141 ◽  
Author(s):  
V. Porkalai ◽  
B. Sathya ◽  
D. Benny Anburaj ◽  
G Nedunchezhian ◽  
S. Joshua Gnanamuthu ◽  
...  

Recently, transition metal (TM) and rare earth ion doped II–VI semiconductor nanoparticles have received much attention because such doping can modify and improve optical properties of II–VI semiconductor nanoparticles by large amount. In this study, undoped, La doped and La+Ag co-doped ZnO nano particles have been successfully synthesized by sol-gel method using the mixture of Zinc acetate dihydrate and ethanol solution. The powders were calcinated at 600 °C for 2 h. The effect of lanthanum and lanthanum-silver incorporation on the structure, morphology, optical and electrical conductivity were examined by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Absorption (EDAX), Fourier transform infrared spectroscopy (FTIR), UV and Photo Luminescence (PL) Characterization. The average particle size of the synthesized ZnO nanoparticles is calculated using the Scherrer formula and is found to be of less than 20 nm. Luminescences properties were found to be enhanced for the La and La+Ag co-doped ZnO nanoparticles.


2012 ◽  
Vol 177 (5) ◽  
pp. 428-435 ◽  
Author(s):  
Sajid Ali Ansari ◽  
Ambreen Nisar ◽  
Bushara Fatma ◽  
Wasi Khan ◽  
A.H. Naqvi

Sign in / Sign up

Export Citation Format

Share Document