Dielectric properties, complex impedance analysis and electrical properties of novel particulate composites of NBT-SrFe12O19

2020 ◽  
Vol 31 (14) ◽  
pp. 11609-11617
Author(s):  
Sunita Dagar ◽  
Ashima Hooda ◽  
Satish Khasa
2019 ◽  
Vol 8 (3) ◽  
pp. 234
Author(s):  
Nasr Hadi ◽  
Tajdine Lamcharfi ◽  
Farid Abdi ◽  
Nor-Said Echtoui ◽  
Ahmed Harrach ◽  
...  

<p class="Abstract"><span lang="EN-US">The influences of calcination temperature and doping with cobalt in A–site on structural and dielectric properties of CaCu<sub>3-x</sub>Co<sub>x</sub>Ti<sub>4</sub>O<sub>12</sub> (CCCxTO, x = 0.00, 0.02 and 0.10) ceramics sintered at 1050 <sup>0</sup>C for 8h were investigated. The ceramic samples are prepared by the conventional solid-state method using high purity oxide powders, and they are calcined at 850 °C, 950 °C and 1050 <sup>0</sup>C for 4h. The X-ray diffraction (XRD) analysis of pure and doped CCTO samples calcined at 950 °C and 1050 <sup>0</sup>C showed no traces of any other secondary phases, while impurity phases alongside CCTO phase in the x=0.00 sample calcined at 850 <sup>0</sup>C was observed. Scanning electron microscopy (SEM) investigation showed an increase in grain size with increasing of Co content and calcining temperature. Dielectric measurements indicated that the dielectric constant of the pure CCTO calcined at 1050 <sup>0</sup>C/4h has a low value in the frequency range of 1kHz up to 1MHz, whereas the substitution of Co up to x = 0.10 into CCTO caused a huge increase in the dielectric constant value of the calcined samples which is equal to 153419 and 18957 at 950 <sup>°</sup>C and 1050 <sup>0</sup>C respectively. The complex impedance analysis of all samples shows a decrease in resistance with an increasing temperature, which suggests a semiconductor nature of the samples.</span></p>


RSC Advances ◽  
2015 ◽  
Vol 5 (3) ◽  
pp. 2177-2184 ◽  
Author(s):  
M. Smari ◽  
H. Rahmouni ◽  
N. Elghoul ◽  
I. Walha ◽  
E. Dhahri ◽  
...  

The electric and dielectric properties of La0.5Ca0.5−xAgxMnO3 (LCMO–Ag with x = 0 and x = 0.4) were investigated using the impedance spectroscopy technique.


2015 ◽  
Vol 1094 ◽  
pp. 155-159
Author(s):  
Li Peng Tian ◽  
Zhi Hua Ren

Apatite-type lanthanum silicates doped with Pr3+ at the La site, La10-xPrxSi6O27 (x = 0, 1, 2, 3, 4, 4.5), were synthesized via sol-gel process. Thermal behavior of the dried gel of La10-xPrxSi6O27 sample was studied using TG/DTA. X-ray diffraction, SEM and complex impedance analysis were used to investigate the microstructure and electrical properties of La10-xPrxSi6O27 ceramics. The XRD results indicated the maximum doping quantity of Pr3+ is x = 4.5. Lanthanum silicates doped with Pr3+ cations have a higher total conductivity than that of undoped lanthanum silicates. The enhanced total conductivity depends on the improved density of La10-xPrxSi6O27 (x = 0, 1, 2, 3, 4, 4.5). At 973K, the highest total conductivity is 1.36×10-3S.cm-1 for La9PrSi6O27 ceramic.


2021 ◽  
Vol 13 ◽  
Author(s):  
Jayanta Kumar Mishra ◽  
Khusboo Agrawal ◽  
Banarji Behera

Background: Since (1-x)[Pb(Mg1/3Nb2/3)O3]-(x)PbTiO3 (PMN-PT) ceramic has high dielectric constant and piezoelectric coefficient, it has been widely investigated for profound applications in electro-optical devices, sensors, multilayer capacitors and actuators. Objectives: The aim is to study the structural and electrical properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (0.7PMN-0.3PT) ceramic to understand the biphasic structural nature using Rietveld Refinement. Also, it characterises on the basis of electrical properties such as impedance and modulus to understand the relaxation process, type of conduction process as well as the role of grain and grain boundary resistance in the material. Methods: 0.7PMN-0.3PT is synthesised by mixed oxide method using PbO, MgO, Nb2O5 and TiO2 as precursor materials. Results: The XRD data reveals the biphasic structure of tetragonal phase with the space group of P4mm and monoclinic phase with the space group of Pm. The complex impedance analysis clearly represents the effect of grain on the overall resistance and departs from normal Debye type behaviour. Also, the resistance is found to decrease with temperature, thereby confirming the semiconducting nature of the sample. The presence of long as well as short-range mobility of charge carriers is confirmed from the modulus and impedance analysis. The influence of long-range motion is observed at high temperature and of short-range motion at low temperatures. Conclusion: XRD analysis confirmed the biphasic structure of M+T phase. The frequency-dependent modulus and impedance spectroscopy show the presence of a relaxation effect in the ceramic which is found to increase with temperature. The Nyquist plot shows that the resistance is decreased with temperature, thereby confirming the NTCR behaviour in the studied sample.


2015 ◽  
Vol 44 (22) ◽  
pp. 10457-10466 ◽  
Author(s):  
H. Rahmouni ◽  
M. Smari ◽  
B. Cherif ◽  
E. Dhahri ◽  
K. Khirouni

This study presents the electrical properties, complex impedance analysis and dielectrical behavior of La0.5Ca0.5−xAgxMnO3 manganites.


2018 ◽  
Vol 08 (03) ◽  
pp. 1850022 ◽  
Author(s):  
Bibhuti B. Sahu ◽  
S. K. Patri ◽  
Banarji Behera ◽  
B. Maharana

The polycrystalline sample of Ba2Mg2Fe[Formula: see text]O[Formula: see text] was prepared by solid-state reaction technique. Room-temperature X-ray diffraction (XRD) has confirmed the formation of rhombohedral structure. The electrical properties of the sample were studied in wide ranges of temperatures and frequencies. The impedance analysis indicates the presence of bulk effect. The bulk resistance of the material decreases with rise in temperature and exhibits NTCR behavior. This compound also exhibits the temperature-dependent non-Debye type of relaxation phenomena. The presence of non-Debye type of relaxation has been confirmed by the complex impedance analysis. The variation of DC conductivity (bulk) with temperature demonstrates that the compound exhibits Arrhenius type of electrical conductivity. The activation energy of the compound is found to be 0.55[Formula: see text]eV in high-temperature region.


2014 ◽  
Vol 88 (12) ◽  
pp. 1251-1256 ◽  
Author(s):  
F. Sallemi ◽  
M. Megdiche ◽  
B. Louati ◽  
K. Guidara

Sign in / Sign up

Export Citation Format

Share Document