The influence of seed layer electroplating time on structural properties, optical energy bandgap, diameter, growth orientation and surface roughness of ZnO nanorods

Author(s):  
Umut Saraç ◽  
M. Celalettin Baykul
2021 ◽  
Vol 16 (2) ◽  
pp. 281-287
Author(s):  
Alaa Y. Mahmoud

The effect of the volumetric ratio of the tris(8-hydroxyquinoline) aluminum (Alq3) on its blend with the N,N'-Di [(1-naphthyl)-N,N'-diphenyl]-(1,1'-biphenyl)-4,4'-diamine (NPD) (Alq3:NPD) is investigated and optimized for the UV photodetectors fabrication. The optical and structural properties of Alq3:NPD blend with different volumetric ratios 1:1, 2:1, and 3:1 is studied in the context of the absorbance, transmittance, optical energy gap and XRD patterns. Results show that the absorbance is increased by 11% at A = 260 nm with the increase in the volumetric ratio. In contrast, the optical energy bandgap that is extrapolated from the Tauc’s plot is decreased with the increase in the volumetric ratio, and the 2:1 ratio shows the lowest energy in the UV region. In terms of the XRD investigation, the 2:1 volumetric ratio shows the highest intensity for the crystallinity peak at 36.6°. The fabricated photodetector with a different volumetric ratio of the active layer Alq3:NPD blend shows the best performance with the ratio 2:1.


2015 ◽  
Vol 18 (2) ◽  
pp. 083-086
Author(s):  
Yow-Chyun Shyu ◽  
Min Han Lin ◽  
Shang-Ren Lin ◽  
Shang Lin Tsai ◽  
Chin Pang Chen ◽  
...  

ZnO nanorods were deposited on silicon substrate using sol-gel hydrothermal methods. The seed layer was first grown by sol-gel methods and then annealed at temperatures of 300ºC, 400ºC, 500ºC and 600ºC. Multiple material and optical analyses including field-emission scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction, photoluminescence spectra, and Raman spectra were conducted to examine the growth orientation and material properties. Results indicate that the ZnO nanorods annealed at a proper temperature of 400ºC could enhance orientation and material quality.


2011 ◽  
Vol 10 (04n05) ◽  
pp. 845-849
Author(s):  
GAURAV SHUKLA ◽  
ALIKA KHARE

Hydrothermal growth of highly c-axis oriented ZnO nanorods with high aspect ratio on pulsed laser deposited ZnO seed layer is reported. Effect of pre-heating time, growth time and seed layer on the structural, morphological and optical properties of ZnO nanorods is presented. The possible growth mechanism for ZnO nanorods is also discussed.


RSC Advances ◽  
2016 ◽  
Vol 6 (3) ◽  
pp. 2112-2118 ◽  
Author(s):  
Luís F. Da Silva ◽  
Osmando F. Lopes ◽  
Ariadne C. Catto ◽  
Waldir Avansi ◽  
Maria I. B. Bernardi ◽  
...  

The ZnO–SnO2 heterojunction catalyst was prepared via a hydrothermal treatment route. The heterojunction exhibited a superior photocatalytic performance in comparison to SnO2 and ZnO, attributed to the good charge separation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jinyu Ruan ◽  
Chao Yin ◽  
Tiandong Zhang ◽  
Hao Pan

Ferroelectric multilayer films attract great attention for a wide variation of applications. The synergistic effect by combining different functional layers induces distinctive electrical properties. In this study, ferroelectric BaZr0.2Ti0.8O3/PbZr0.52Ti0.48O3/BaZr0.2Ti0.8O3 (BZT/PZT/BZT) multilayer thin films are designed and fabricated by using the magnetron sputtering method, and a LaNiO3 (LNO) seed layer is introduced. The microstructures and electrical properties of the BZT/PZT/BZT films with and without the LNO seed layer are systematically studied. The results show that the BZT/PZT/BZT/LNO thin film exhibits much lower surface roughness and a preferred (100)-orientation growth, with the growth template and tensile stress provided by the LNO layer. Moreover, an enhanced dielectric constant, decreased dielectric loss, and improved ferroelectric properties are achieved in BZT/PZT/BZT/LNO thin films. This work reveals that the seed layer can play an important role in improving the microstructure and properties of ferroelectric multilayer films.


Sign in / Sign up

Export Citation Format

Share Document