Fabrication of ZnO Nanorods on Silicon Substrates by Sol-gel Hyrdothermal Methods

2015 ◽  
Vol 18 (2) ◽  
pp. 083-086
Author(s):  
Yow-Chyun Shyu ◽  
Min Han Lin ◽  
Shang-Ren Lin ◽  
Shang Lin Tsai ◽  
Chin Pang Chen ◽  
...  

ZnO nanorods were deposited on silicon substrate using sol-gel hydrothermal methods. The seed layer was first grown by sol-gel methods and then annealed at temperatures of 300ºC, 400ºC, 500ºC and 600ºC. Multiple material and optical analyses including field-emission scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction, photoluminescence spectra, and Raman spectra were conducted to examine the growth orientation and material properties. Results indicate that the ZnO nanorods annealed at a proper temperature of 400ºC could enhance orientation and material quality.

2012 ◽  
Vol 217-219 ◽  
pp. 733-736
Author(s):  
Xiu Mei Han ◽  
Shu Ai Hao ◽  
Ying Ling Wang ◽  
Gui Fang Sun ◽  
Xi Wei Qi

Zn2SiO4:Eu3+, Dy3+ phosphors have been prepared through the sol-gel process. X-ray diffraction (XRD), thermogravimetric and ddifferential thermal analysis (TG-DTA), FT-IR spectra and photoluminescence spectra were used to characterize the resulting phosphors. The results of XRD indicated that the phosphors crystallized completely at 1000oC. In Zn2SiO4:Eu3+,Dy3+ phosphors, the Eu3+ and Dy3+ show their characteristic red(613nm, 5D0-7F2), blue (481nm, 4F9/2–6H15/2) and yellow (577nm, 4F9/2–6H13/2) emissions.


2020 ◽  
Vol 27 (08) ◽  
pp. 1950198
Author(s):  
ABDULQADER D. FAISAL ◽  
MOHAMMAD O. DAWOOD ◽  
HASSAN H. HUSSEIN ◽  
KHALEEL I. HASSOON

In this work, ZnO nanorods (ZnO NRs) were successfully synthesized on FTO-glass via hydrothermal technique. Two steps were followed to grow ZnO NRs. In the first step, the seed layer of ZnO nanocrystals was deposited by using a drop cast method. The second step was represented by the hydrothermal growth of ZnO NRs on a pre-coated FTO- glass with the seed layer. The hydrothermal growth was conducted at 90∘C for 2[Formula: see text]h. The resulted structure, morphology and optical properties of the produced layers were analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) equipped with energy dispersive X-ray (EDX) and UV-visible spectrophotometer, respectively. The analysis confirmed that the ZnO NRs grown by the hydrothermal method have a hexagonal crystal structure which was grown randomly on the FTO surface. The crystallite size was recorded 50[Formula: see text]nm and a slight microstrain (0.142%) was calculated. The bandgap was found to be in the range of 3.14–3.17[Formula: see text]eV. The ZnO NRs have a high density and large aspect ratio. A pH sensor with high sensitivity was fabricated using a two-electrode cell configuration. The ZnO NRs sensor showed the sensitivity of [Formula: see text]59.03[Formula: see text]mV/pH, which is quite promising and close to the theoretical value ([Formula: see text]59.12[Formula: see text]mV/pH).


2011 ◽  
Vol 312-315 ◽  
pp. 99-103 ◽  
Author(s):  
Zuraida Khusaimi ◽  
Mohamad Hafiz Mamat ◽  
Mohd Zainizan Sahdan ◽  
Norbani Abdullah ◽  
Mohamad Rusop

A wet chemical approach, originating from sol-gel preparation, was adopted with the intention to develop a low-temperature benign method of preparation. ZnO nanorods are successfully grown in an aqueous medium. The precursor, zinc nitrate hexahydrate (Zn(NO3)2.6H2O), is stabilized by hexamethylene tetraamine (HMTA). The effect of changing the molarity of HMTA to the structural orientation of ZnO nanorods is investigated. X-ray diffraction of the synthesized ZnO shows hexagonal zincite structure. The structural features of the nanocrystalline ZnO were studied by SEM. Structural features, surface morphology and differences in lattice orientation are seemingly influenced by varying the Zn2+: HMTA molar ratio. The formation of ZnO nanorods with blunt and sharp tips is found to be significantly affected by this ratio.


2016 ◽  
Vol 19 (4) ◽  
pp. 181-183 ◽  
Author(s):  
Tzu-Yi Yu ◽  
Yi Cian Chen ◽  
Wang Ting Chiu ◽  
Yang Luo ◽  
Sheng Shin Wang ◽  
...  

In this study, we address process how the ZnO nanorods were deposited on GaN substrates with spin-coating by using the hydro-thermal methods. After ZnO was spin coated, the samples were annealed with different temperatures to incorporate with Au nano particles. Multiple material analyses, such as the field emission scanning electron microscopy (FESEM), the energy dispersive X-ray spectroscopy (EDX) and the X-ray diffraction (XRD) analyses were carried out to characterize the Au nanoparticles/ZnO nanorods/GaN nanocomposites.


1994 ◽  
Vol 343 ◽  
Author(s):  
P. F. Baude ◽  
J. S. Wright ◽  
C. Ye ◽  
L. F. Francis ◽  
D. L. Polla

ABSTRACT(PbBa)(ZrTiNb)03 thin films and powders have been prepared using the sol-gel technique. Solutions were synthesized in 2-methoxyethanol based upon our previous PZT solution preparation. Three different approaches were used for incorporating barium into PZT alkoxide solutions. Thermal analysis and x-ray diffraction results indicated that barium methoxypropoxide gave the best results. PBZTN (71% Pb and 71% Zr) was deposited onto sapphire substrates as well as oxidized silicon substrates. Optical transmission measurements showed greater than 80% transmission for wavelengths longer than 400 nm. Films with thickness of 3000 Å on sapphire exhibited a refractive index of 2.19 at λ=633 nm.


2020 ◽  
Vol 15 (1) ◽  
pp. 41-45 ◽  
Author(s):  
Zhi-Cheng Zhong ◽  
Zhao-Jun Jing ◽  
Kui-Yuan Liu ◽  
Tong Liu

We adopted the sol–gel and hydrothermal methods to prepare the TiO2 nanomaterials doped with ZnO. We adopted X-ray diffraction, scanning electron microscopy, and the Brunauer–Emmett–Teller method to investigate the materials’ structures and morphologies. The results showed that the prepared TiO2 nanomaterials had uniform size and good dispersibility. Gas sensors were fabricated and their performances in acetylene sensing were assessed. The results show that the sensor prepared with the ZnO/TiO2 nanomaterial doped with 10 wt% ZnO gave fast response and recovery times for acetylene gas at different concentrations. When the operating temperature was 280 °C, the gas sensor detected 200 ppm acetylene gas with a response sensitivity of 9.9, a response time of 5 s, and a recovery time of 2 s.


2010 ◽  
Vol 152-153 ◽  
pp. 697-701
Author(s):  
Bing Wang ◽  
Ling Li

A new nanostructure, (2D) nanopetal of SnO2, has been grown on single silicon substrates by Au-Ag alloying catalyst assisted carbothermal evaporation of SnO2. Field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD) and Raman are employed to identify the morphology and structure of the synthesized productions. Room-temperature photoluminescence (PL) is used to characterize the luminescence of SnO2 nanostructure. Three new peaks at 356, 450 and 489 nm in the measured photoluminescence spectra are observed, implying that more luminescence centers exist in SnO2 nanopetals due to nanocrystals and defects. The growth of the SnO2 nanopetals is discussed on the basis of the self-catalyst mechanism.


2016 ◽  
Vol 675-676 ◽  
pp. 130-133
Author(s):  
Wissawat Sakulsaknimitr ◽  
Kanyakorn Teanchai ◽  
Mati Horprathum ◽  
Chanunthorn Chananonnawathorn ◽  
Saksorn Limwichean ◽  
...  

ZnO nanorods were grown on magnetron sputtered ultra-thin ZnO seed layers through a hydrothermal method. Before ZnO nanorods growth, the ultra-thin ZnO seed layer has been annealed at temperatures ranging from 100 to 400°C in air. The influence of annealing treatment on the crystalline structure of the ultra-thin ZnO seed layers has been investigated by X-ray diffraction (XRD). The size and density of final prepared ZnO nanorods were investigated by field-emission scanning electron microscopy (FE-SEM). It was found that the length and the aspect ratio of the ZnOnanorods can be readily tuned by control of the ZnO ultra-thin seeds layer which results from the annealing treatment process.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ebrahim Chalangar ◽  
Omer Nur ◽  
Magnus Willander ◽  
Anders Gustafsson ◽  
Håkan Pettersson

AbstractDifferent ZnO nanostructures can be grown using low-cost chemical bath deposition. Although this technique is cost-efficient and flexible, the final structures are usually randomly oriented and hardly controllable in terms of homogeneity and surface density. In this work, we use colloidal lithography to pattern (100) silicon substrates to fully control the nanorods' morphology and density. Moreover, a sol-gel prepared ZnO seed layer was employed to compensate for the lattice mismatch between the silicon substrate and ZnO nanorods. The results show a successful growth of vertically aligned ZnO nanorods with controllable diameter and density in the designated openings in the patterned resist mask deposited on the seed layer. Our method can be used to fabricate optimized devices where vertically ordered ZnO nanorods of high crystalline quality are crucial for the device performance.


2018 ◽  
Vol 5 (1) ◽  
pp. 39
Author(s):  
Ridhawati Ridhawati ◽  
Abdul Wahid Wahab ◽  
Nursiah La Nafie ◽  
Indah Raya

Mesoporous silica SBA-15 is an interesting material having highly ordered nanopores and large surface area, which is synthesized by sol gel and hydrothermal methods. In this study, mesoporous silica SBA-15 was synthesised with two different methods and the characteris was using X-Ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). SBA-15 was prepared TEOS as precursor and Pluronic 123 as surfactant. Thermoporous mesoporous DSC thermogram results of the SBA-15A mesoporous silica is (Tg 79oC and Tc 158oC). This is relatively lower than SBA-15B (Tg 86oC and Tc 158oC). The measurement of low angle X-Ray Diffraction SBA-15A has a crystal size 9.46 nm and SBA-15B has a crystal size 9.96 nm. The synthesis of SBA-15 using the hydrothermal method needs to be studied further to obtain thermal characteristics and a more stable crystal structure


Sign in / Sign up

Export Citation Format

Share Document