Rapid fabrication and thermoelectric properties of Sn1.03Te-based materials with porous configuration

Author(s):  
Houjiang Yang ◽  
Bo Duan ◽  
Ling Zhou ◽  
Jialiang Li ◽  
Hongtao Wang ◽  
...  
RSC Advances ◽  
2019 ◽  
Vol 9 (19) ◽  
pp. 10508-10519 ◽  
Author(s):  
Tiezheng Hu ◽  
Yonggao Yan ◽  
Si Wang ◽  
Xianli Su ◽  
Wei Liu ◽  
...  

Cu2Se is a promising material for thermoelectric energy conversion. Fully dense single-phase bulk Cu2Se was prepared by the combination of self-propagating high-temperature synthesis with in situ quick pressing for the first time.


2008 ◽  
Author(s):  
David Johnson ◽  
Qiyin Lin ◽  
Mary Smeller ◽  
Colby Heideman ◽  
Arwyn L. E. Smalley

2000 ◽  
Vol 626 ◽  
Author(s):  
Harald Beyer ◽  
Joachim Nurnus ◽  
Harald Böttner ◽  
Armin Lambrecht ◽  
Lothar Schmitt ◽  
...  

ABSTRACTThermoelectric properties of low dimensional structures based on PbTe/PbSrTe-multiple quantum-well (MQW)-structures with regard to the structural dimensions, doping profiles and levels are presented. Interband transition energies and barrier band-gap are determined from IR-transmission spectra and compared with Kronig-Penney calculations. The influence of the data evaluation method to obtain the 2D power factor will be discussed. The thermoelectrical data of our layers show a more modest enhancement in the power factor σS2 compared with former publications and are in good agreement with calculated data from Broido et al. [5]. The maximum allowed doping level for modulation doped MQW structures is determined. Thermal conductivity measurements show that a ZT enhancement can be achieved by reducing the thermal conductivity due to interface scattering. Additionally promising lead chalcogenide based superlattices for an increased 3D figure of merit are presented.


2000 ◽  
Vol 626 ◽  
Author(s):  
Antje Mrotzek ◽  
Kyoung-Shin Choi ◽  
Duck-Young Chung ◽  
Melissa A. Lane ◽  
John R. Ireland ◽  
...  

ABSTRACTWe present the structure and thermoelectric properties of the new quaternary selenides K1+xM4–2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22. The compounds K1+xM4-2xBi7+xSe15 (M= Sn, Pb) crystallize isostructural to A1+xPb4-2xSb7+xSe15 with A = K, Rb, while K1-xSn5-xBi11+xSe22 reveals a new structure type. In both structure types fragments of the Bi2Te3-type and the NaCl-type are connected to a three-dimensional anionic framework with K+ ions filled tunnels. The two structures vary by the size of the NaCl-type rods and are closely related to β-K2Bi8Se13 and K2.5Bi8.5Se14. The thermoelectric properties of K1+xM4-2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22 were explored on single crystal and ingot samples. These compounds are narrow gap semiconductors and show n-type behavior with moderate Seebeck coefficients. They have very low thermal conductivity due to an extensive disorder of the metal atoms and possible “rattling” K+ ions.


2012 ◽  
Vol 29 (9) ◽  
pp. 1096
Author(s):  
Jipeng FU ◽  
Xiuyun YANG ◽  
Shanshan ZHANG ◽  
Ying GAO ◽  
Xiuxia GAO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document