Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering

2009 ◽  
Vol 20 (6) ◽  
pp. 1255-1262 ◽  
Author(s):  
S. Cahill ◽  
S. Lohfeld ◽  
P. E. McHugh
2005 ◽  
Vol 128 (2) ◽  
pp. 531-540 ◽  
Author(s):  
Brock Partee ◽  
Scott J. Hollister ◽  
Suman Das

Tissue engineering combines principles of the life sciences and engineering to replace and repair damaged human tissue. Present tissue engineering methods generally require the use of porous, bioresorbable scaffolds to serve as temporary three-dimensional templates to guide cell attachment, differentiation, proliferation, and subsequent regenerate tissue formation. Such scaffolds are anticipated to play an important role in allowing physicians to simultaneously reconstruct and regenerate damaged human tissues such as bone, cartilage, ligament, and tendon. Recent research strongly suggests that the choice of scaffold material and its internal porous architecture significantly influence regenerate tissue structure and function. However, a lack of versatile biomaterials processing and manufacturing methods capable of meeting the complex geometric and compositional requirements of tissue engineering scaffolds has slowed progress towards fully testing these promising findings. It is widely accepted that layered manufacturing methods such as selective laser sintering (SLS) have the potential to address these requirements. We have investigated SLS as a technique to fabricate tissue engineering scaffolds composed of polycaprolactone (PCL), one of the most widely investigated biocompatible, bioresorbable materials for tissue engineering applications. In this article, we report on our development of optimal SLS processing parameters for CAPA® 6501 PCL powder using systematic factorial design of experiments. Using the optimal parameters, we manufactured test scaffolds with designed porous channels and achieved dimensional accuracy to within 3%–8% of design specifications and densities approximately 94% relative to full density. Finally, using the optimal SLS process parameters, we demonstrated the successful fabrication of bone tissue engineering scaffolds based on actual minipig and human condyle scaffold designs.


2004 ◽  
Vol 845 ◽  
Author(s):  
Brock Partee ◽  
Scott J. Hollister ◽  
Suman Das

ABSTRACTPresent tissue engineering practice requires porous, bioresorbable scaffolds to serve as temporary 3D templates to guide cell attachment, differentiation, and proliferation. Recent research suggests that scaffold material and internal architecture significantly influence regenerate tissue structure and function. However, lack of versatile biomaterials processing methods have slowed progress towards fully testing these findings. Our research investigates using selective laser sintering (SLS) to fabricate bone tissue engineering scaffolds. Using SLS, we have fabricated polycaprolactone (PCL) and polycaprolactone/tri-calcium phosphate composite scaffolds. We report on scaffold design and fabrication, mechanical property measurements, and structural characterization via optical microscopy and micro-computed tomography.


2015 ◽  
Vol 6 (2) ◽  
pp. 171-178 ◽  
Author(s):  
E. N. Antonov ◽  
S. M. Barinov ◽  
I. V. Vakhrushev ◽  
V. S. Komlev ◽  
V. K. Popov ◽  
...  

2011 ◽  
Vol 3 (2) ◽  
pp. 025004 ◽  
Author(s):  
Krishna C R Kolan ◽  
Ming C Leu ◽  
Gregory E Hilmas ◽  
Roger F Brown ◽  
Mariano Velez

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Maryam Tamaddon ◽  
Sorousheh Samizadeh ◽  
Ling Wang ◽  
Gordon Blunn ◽  
Chaozong Liu

Large bone defects and nonunions are serious complications that are caused by extensive trauma or tumour. As traditional therapies fail to repair these critical-sized defects, tissue engineering scaffolds can be used to regenerate the damaged tissue. Highly porous titanium scaffolds, produced by selective laser sintering with mechanical properties in range of trabecular bone (compressive strength 35 MPa and modulus 73 MPa), can be used in these orthopaedic applications, if a stable mechanical fixation is provided. Hydroxyapatite coatings are generally considered essential and/or beneficial for bone formation; however, debonding of the coatings is one of the main concerns. We hypothesised that the titanium scaffolds have an intrinsic potential to induce bone formation without the need for a hydroxyapatite coating. In this paper, titanium scaffolds coated with hydroxyapatite using electrochemical method were fabricated and osteoinductivity of coated and noncoated scaffolds was compared in vitro. Alizarin Red quantification confirmed osteogenesis independent of coating. Bone formation and ingrowth into the titanium scaffolds were evaluated in sheep stifle joints. The examinations after 3 months revealed 70% bone ingrowth into the scaffold confirming its osteoinductive capacity. It is shown that the developed titanium scaffold has an intrinsic capacity for bone formation and is a suitable scaffold for bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document