carbonated hydroxyapatite
Recently Published Documents


TOTAL DOCUMENTS

283
(FIVE YEARS 81)

H-INDEX

36
(FIVE YEARS 10)

Author(s):  
Bernard Owusu Asimeng ◽  
Ernest Emmanuel Obeng ◽  
Obed Obeng‐Gyasi ◽  
Niloofar Alipoormazandarani ◽  
Ebenezer Annan ◽  
...  

Materialia ◽  
2021 ◽  
Vol 20 ◽  
pp. 101205
Author(s):  
Lu Fan ◽  
Weiteng Kong ◽  
Chunxia Gao ◽  
Peizhi Zhu

Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1189
Author(s):  
Mona Sari ◽  
Aminatun ◽  
Tri Suciati ◽  
Yessie Widya Sari ◽  
Yusril Yusuf

Porosity is one of the parameters of scaffold pore structure that must be developed using paraffin wax as a synthetic polymer for making porous bioceramics carbonated hydroxyapatite (CHA). This study fabricated CHA based on abalone mussel shells (Halioitis asinina); CHA/paraffin wax nanocomposite scaffolds were synthesized using paraffin wax with concentration variations of 10, 20, and 30 wt.%. The energy-dispersive X-ray spectroscopy (EDS) results showed that the Ca/P molar ratio of CHA was 1.72, which approaches the natural bone. The addition of paraffin wax in all concentration variation treatments caused the crystallographic properties of the CHA/paraffin wax nanocomposite scaffolds to decrease. The results of pore analysis suggest that the high concentration of paraffin wax in the CHA suspension is involved in the formation of more pores on the surface of the scaffold, but only CHA/paraffin wax 30 wt.% had a scaffold with potential to be used in media with a cellular growth orientation. The micropore analysis was also supported by the cell viability assay results for CHA/paraffin wax 30 wt.% nanocomposite scaffold, where serial doses of scaffold concentrations to mouse osteoblast cells were secure. Overall, based on this analysis, the CHA/paraffin wax scaffold can be a candidate for bone tissue engineering.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 941
Author(s):  
Mona Sari ◽  
Nicholas Kristianto ◽  
Chotimah ◽  
Ika Ana ◽  
Yusril Yusuf

In this work, carbonated hydroxyapatite (CHA) based on abalone mussel shells (Haliotis asinina) is synthesized using the co-precipitation method. The synthesized CHA was mixed with honeycomb (HCB) 40 wt.% for the scaffold fabrication process. CHA and scaffold CHA/HCB 40 wt.% were used for coating a Titanium (Ti) alloy using the electrophoretic deposition dip coating (EP2D) method with immersion times of 10, 20, and 30 min. The synthesized B-type CHA with a stirring time of 45 min could have lower transmittance values and smaller crystallite size. Energy dispersive X-ray spectroscopy (EDS) showed that the Ca/P molar ratio was 1.79. The scaffold CHA/HCB 40 wt.% had macropore size, micropore size, and porosity of 102.02 ± 9.88 μm, 1.08 ± 0.086 μm, and 66.36%, respectively, and therefore it can also be applied in the coating process for bone implant applications due to the potential scaffold for bone growth. Thus, it has the potential for coating on Ti alloy applications. In this study, the compressive strength for all immersion time variations was about 54–83 MPa. The average compression strengths of human cancellous bone were about 0.2–80 MPa. The thickness obtained was in accordance with the thickness parameters required for a coating of 50–200 μm.


Sign in / Sign up

Export Citation Format

Share Document