scholarly journals Incorporation of heparin/BMP2 complex on GOCS-modified magnesium alloy to synergistically improve corrosion resistance, anticoagulation, and osteogenesis

Author(s):  
Yuebin Lin ◽  
Ya Yang ◽  
Yongjuan Zhao ◽  
Fan Gao ◽  
Xin Guo ◽  
...  

AbstractThe in vivo fast degradation and poor biocompatibility are two major challenges of the magnesium alloys in the field of artificial bone materials. In this study, graphene oxide (GO) was first functionalized by chitosan (GOCS) and then immobilized on the magnesium alloy surface, finally the complex of heparin and bone morphogenetic protein 2 was incorporated on the modified surface to synergistically improve the corrosion resistance, anticoagulation, and osteogenesis. Apart from an excellent hydrophilicity after the surface modification, a sustained heparin and BMP2 release over 14 days was achieved. The corrosion resistance of the modified magnesium alloy was significantly better than that of the control according to the results of electrochemical tests. Moreover, the corrosion rate was also significantly reduced in contrast to the control. The modified magnesium alloy not only had excellent anticoagulation, but also can significantly promote osteoblast adhesion and proliferation, upregulate the expression of alkaline phosphatase and osteocalcin, and enhance mineralization. Therefore, the method of the present study can be used to simultaneously improve the corrosion resistance and biocompatibility of the magnesium alloys targeted for the orthopedic applications.

2021 ◽  
Vol 10 (1) ◽  
pp. 870-882
Author(s):  
Qiuyang Zhang ◽  
Li Zhang ◽  
Minhui Yang ◽  
Qingxiang Hong ◽  
Zhongmei Yang ◽  
...  

Abstract As biodegradable orthopedic implant materials, magnesium alloys have been attracted enough attentions recently. However, too fast degradation in vivo, limited biocompatibilities, and insufficient antibacterial properties are three main challenges at present. In order to solve these problems, a multifunctional composite coating of Chi(Zn/BMP2)/HA was constructed on AZ31B magnesium alloy surface, successively by the alkali heating treatment, self-assembly of 16-phosphonyl-hexadecanoic acid, in situ immobilization of Chi(Zn/BMP2) (chitosan, zinc ions, and bone morphogenetic protein 2), and the deposition of HA (hydroxyapatite). The results of ATR-FTIR (attenuated total reflection Fourier transform infrared spectrum) spectra and elemental compositions confirmed that 16-phosphonyl-hexadecanoic acid, Chi(Zn/BMP2), and HA were successfully immobilized on the surface. Compared with Mg, Mg-OH, Mg-16, and Mg-Chi(Zn/BMP2), Mg-Chi(Zn/BMP2)/HA with the concave–convex structure surface significantly enhanced the hydrophilicity and corrosion resistance. On the other hand, Mg-Chi(Zn/BMP2)/HA coating also showed excellent biocompatibilities, which not only significantly promoted the osteoblast adhesion and proliferation, but also upregulated ALP and OCN expression of osteoblasts. Furthermore, due to the synergistic antibacterial effect of zinc ions and chitosan, Mg-Chi(Zn/BMP2)/HA showed a good antibacterial property against Escherichia coli (E. coli). Therefore, it can be said that the method used in this work has a good application prospect in improving the corrosion resistance, biocompatibility of magnesium alloys, and inhibiting infections against E. coli.


Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 396 ◽  
Author(s):  
Shun-Yi Jian ◽  
Mei-Ling Ho ◽  
Bing-Ci Shih ◽  
Yue-Jun Wang ◽  
Li-Wen Weng ◽  
...  

Magnesium alloys have recently been attracting attention as a degradable biomaterial. They have advantages including non-toxicity, biocompatibility, and biodegradability. To develop magnesium alloys into biodegradable medical materials, previous research has quantitatively analyzed magnesium alloy corrosion by focusing on the overall changes in the alloy. Therefore, the objective of this study is to develop a bioactive material by applying a ceramic oxide coating (magnesia) on AZ31 magnesium alloy through micro-arc oxidation (MAO) process. This MAO process is conducted under pulsed bipolar constant current conditions in a Si- and P-containing electrolyte and the optimal processing parameters in corrosion protection are obtained by the Taguchi method to design a coating with good anti-corrosion performance. The negative duty cycle and treatment time are two deciding factors of the coating’s capability in corrosion protection. Microstructure characterizations are investigated by means of SEM and XRD. The simulation body-fluid solution is utilized for testing the corrosion resistance with the potentiodynamic polarization and the electrochemical impedance test data. Finally, an in vivo testing shows that the MAO-coated AZ31 has good cytocompatibility and anticorrosive properties.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 979
Author(s):  
Patricia Garcia-Garcia ◽  
Ricardo Reyes ◽  
José Antonio Rodriguez ◽  
Tomas Martín ◽  
Carmen Evora ◽  
...  

Biomaterials-mediated bone formation in osteoporosis (OP) is challenging as it requires tissue growth promotion and adequate mineralization. Based on our previous findings, the development of scaffolds combining bone morphogenetic protein 2 (BMP-2) and matrix metalloproteinase 10 (MMP-10) shows promise for OP management. To test our hypothesis, scaffolds containing BMP-2 + MMP-10 at variable ratios or BMP-2 + Alendronate (ALD) were prepared. Systems were characterized and tested in vitro on healthy and OP mesenchymal stem cells and in vivo bone formation was studied on healthy and OP animals. Therapeutic molecules were efficiently encapsulated into PLGA microspheres and embedded into chitosan foams. The use of PLGA (poly(lactic-co-glycolic acid)) microspheres as therapeutic molecule reservoirs allowed them to achieve an in vitro and in vivo controlled release. A beneficial effect on the alkaline phosphatase activity of non-OP cells was observed for both combinations when compared with BMP-2 alone. This effect was not detected on OP cells where all treatments promoted a similar increase in ALP activity compared with control. The in vivo results indicated a positive effect of the BMP-2 + MMP-10 combination at both of the doses tested on tissue repair for OP mice while it had the opposite effect on non-OP animals. This fact can be explained by the scaffold’s slow-release rate and degradation that could be beneficial for delayed bone regeneration conditions but had the reverse effect on healthy animals. Therefore, the development of adequate scaffolds for bone regeneration requires consideration of the tissue catabolic/anabolic balance to obtain biomaterials with degradation/release behaviors suited for the existing tissue status.


Cartilage ◽  
2020 ◽  
pp. 194760352098015
Author(s):  
Mara H. O’Brien ◽  
Eliane H. Dutra ◽  
Shivam Mehta ◽  
Po-Jung Chen ◽  
Sumit Yadav

Objective Bone morphogenetic protein 2 (BMP2) plays important roles in cartilage growth and development. Paradoxically, elevated levels of BMP2 leads to hypertrophic differentiation and osteoarthritis of cartilage. We examined the in vivo loss of BMP2 in cells expressing aggrecan of the mandibular condyle and knee. Design Three-week-old BMP2 flox/flox- CreER-positive mice and their Cre-negative littermates were treated with tamoxifen and raised until 3 or 6 months. We also investigated the direct effects of BMP2 on chondrocytes in vitro. Cells from the mandibular condyle of mice were treated with recombinant human BMP2 (rhBMP2) or rhNoggin (inhibitor of BMP2 signaling). Results Conditional deletion of BMP2 caused breakage of the cartilage integrity in the mandibular condyle of mice from both age groups, accompanied by a decrease in cartilage thickness, matrix synthesis, mineralization, chondrocyte proliferation, and increased expression of degeneration markers, while the effects at articular cartilage were not significant. In vitro results revealed that rhBMP2 increased chondrocyte proliferation, mineralization, and differentiation, while noggin induced opposite effects. Conclusions In conclusion, BMP2 is essential for postnatal maintenance of the osteochondral tissues of the mandibular condyle.


2015 ◽  
Vol 3 (8) ◽  
pp. 1667-1676 ◽  
Author(s):  
Jiadi Sun ◽  
Ye Zhu ◽  
Long Meng ◽  
Wei Wei ◽  
Yang Li ◽  
...  

Self-assembled nanoparticles loaded with bioactive agents were electrodeposited to provide the magnesium alloy with controlled release and corrosion resistance properties.


2016 ◽  
Vol 5 (6) ◽  
pp. 730-742 ◽  
Author(s):  
Salwa Suliman ◽  
Yang Sun ◽  
Torbjorn O. Pedersen ◽  
Ying Xue ◽  
Joachim Nickel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document