scholarly journals Solvent-accessibility of discrete residue positions in the polypeptide hormone glucagon by 19F-NMR observation of 4-fluorophenylalanine

2017 ◽  
Vol 68 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Yaguang Hou ◽  
Wanhui Hu ◽  
Xiaona Li ◽  
John J. Skinner ◽  
Dongsheng Liu ◽  
...  
1998 ◽  
Vol 95 (2) ◽  
pp. 395-400
Author(s):  
O. Jarjayes ◽  
S. Hamman ◽  
C. G. Beguin
Keyword(s):  

1994 ◽  
Vol 71 (01) ◽  
pp. 134-140 ◽  
Author(s):  
S Ueshima ◽  
P Holvoet ◽  
H R Lijnen ◽  
L Nelles ◽  
V Seghers ◽  
...  

SummaryIn an effort to modify the fibrinolytic and/or pharmacokinetic properties of recombinant low M r single-chain urokinase-type plasminogen activator (rscu-PA-32k), mutants were prepared by site-directed mutagenesis of clusters of charged amino acids with the highest solvent accessibility. The following mutants of rscu-PA-32k were prepared: LUK-2 (Lys 212, Glu 213 and Asp 214 to Ala), LUK-3 (Lys 243 and Asp 244 to Ala), LUK-4 (Arg 262, Lys 264, Glu 265 and Arg 267 to Ala), LUK-5 (Lys 300, Glu 301 and Asp 305 to Ala) and LUK-6 (Arg 400, Lys 404, Glu 405 and Glu 406 to Ala).The rscu-PA 32k moictic3 were expressed in High Five Ttichoplasiani cells, and purified to humugciicily from the conditioned cell culture medium, with recoveries of 0.8 to 3.7 mg/1. The specific fibrinolytic activities (220,000 to 300,000 IU/mg), the rates of plasminogen activation by the single-chain moieties and the rates of conversion In lwo chain moieties by plasmin were comparable for mutant and wild-type rscu PA 32k moieties, with the exception of LUK-5 which was virtually inactive. Equi-effective lysis (50% in 2 h) of 60 pi 125I-fibrin labeled plasma clots submerged in 0.5 ml normal human plasma was obtained with 0.7 to 0.8 μg/ml of wild-type or mutant rscu-PA-3?.k, except with LUK-5 (no significant lysis with 16 pg/ml). Following bolus injection in hamsters, all rscu-PA-32k moieties had a comparably rapid plasma clearance (1.3 to 2.7 ml/min), as a result of a short initial half-life (1.4 to 2.5 min). In hamsters with pulmonary embolism, continuous intravenous infusion over 60 min at a dose of 1 mg/kg, resulted in 53 to 72% clot lysis with the mutants, but only 23% with LUK-5, as compared to 36% for wild-type rscu-PA-32k.These data indicate that clustered charge-to-alanine mutants of rscu-PA-32k, designed to eliminate charged regions with the highest solvent accessibility, do not have significantly improved functional, fibrinolytic or pharmacokinetic properties.


1971 ◽  
Vol 68 (1_Supplb) ◽  
pp. S213
Author(s):  
Frank Sundler ◽  
A. Melander ◽  
Ch. Owman
Keyword(s):  

2019 ◽  
Vol 26 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Jen Bohon

Background: First developed in the 1990’s at the National Synchrotron Light Source, xray synchrotron footprinting is an ideal technique for the analysis of solution-state structure and dynamics of macromolecules. Hydroxyl radicals generated in aqueous samples by intense x-ray beams serve as fine probes of solvent accessibility, rapidly and irreversibly reacting with solvent exposed residues to provide a “snapshot” of the sample state at the time of exposure. Over the last few decades, improvements in instrumentation to expand the technology have continuously pushed the boundaries of biological systems that can be studied using the technique. Conclusion: Dedicated synchrotron beamlines provide important resources for examining fundamental biological mechanisms of folding, ligand binding, catalysis, transcription, translation, and macromolecular assembly. The legacy of synchrotron footprinting at NSLS has led to significant improvement in our understanding of many biological systems, from identifying key structural components in enzymes and transporters to in vivo studies of ribosome assembly. This work continues at the XFP (17-BM) beamline at NSLS-II and facilities at ALS, which are currently accepting proposals for use.


2019 ◽  
Vol 26 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Natalie K. Garcia ◽  
Galahad Deperalta ◽  
Aaron T. Wecksler

Background: Biotherapeutics, particularly monoclonal antibodies (mAbs), are a maturing class of drugs capable of treating a wide range of diseases. Therapeutic function and solutionstability are linked to the proper three-dimensional organization of the primary sequence into Higher Order Structure (HOS) as well as the timescales of protein motions (dynamics). Methods that directly monitor protein HOS and dynamics are important for mapping therapeutically relevant protein-protein interactions and assessing properly folded structures. Irreversible covalent protein footprinting Mass Spectrometry (MS) tools, such as site-specific amino acid labeling and hydroxyl radical footprinting are analytical techniques capable of monitoring the side chain solvent accessibility influenced by tertiary and quaternary structure. Here we discuss the methodology, examples of biotherapeutic applications, and the future directions of irreversible covalent protein footprinting MS in biotherapeutic research and development. Conclusion: Bottom-up mass spectrometry using irreversible labeling techniques provide valuable information for characterizing solution-phase protein structure. Examples range from epitope mapping and protein-ligand interactions, to probing challenging structures of membrane proteins. By paring these techniques with hydrogen-deuterium exchange, spectroscopic analysis, or static-phase structural data such as crystallography or electron microscopy, a comprehensive understanding of protein structure can be obtained.


2019 ◽  
Vol 26 (26) ◽  
pp. 4964-4983 ◽  
Author(s):  
CongBao Kang

Solution NMR spectroscopy plays important roles in understanding protein structures, dynamics and protein-protein/ligand interactions. In a target-based drug discovery project, NMR can serve an important function in hit identification and lead optimization. Fluorine is a valuable probe for evaluating protein conformational changes and protein-ligand interactions. Accumulated studies demonstrate that 19F-NMR can play important roles in fragment- based drug discovery (FBDD) and probing protein-ligand interactions. This review summarizes the application of 19F-NMR in understanding protein-ligand interactions and drug discovery. Several examples are included to show the roles of 19F-NMR in confirming identified hits/leads in the drug discovery process. In addition to identifying hits from fluorinecontaining compound libraries, 19F-NMR will play an important role in drug discovery by providing a fast and robust way in novel hit identification. This technique can be used for ranking compounds with different binding affinities and is particularly useful for screening competitive compounds when a reference ligand is available.


Sign in / Sign up

Export Citation Format

Share Document