In-situ diurnal sea surface temperature variations and near-surface thermal structure in the tropical hot event of the Indo-Pacific warm pool

2008 ◽  
Vol 64 (6) ◽  
pp. 847-857 ◽  
Author(s):  
Hiroshi Kawamura ◽  
Huiling Qin ◽  
Kentaro Ando
2020 ◽  
Author(s):  
Niklas Meinicke ◽  
Maria Reimi ◽  
Christina Ravelo ◽  
Nele Meckler

<p>The Western Pacific Warm Pool (WPWP) as a major source of heat and water vapor has a crucial influence on climate dynamics both in the tropics and globally. Yet, there is conflicting proxy evidence regarding the evolution of WPWP temperatures since the Miocene. On the one hand TEX<sub>86</sub> data suggest a gradual cooling by ~2℃ (O’Brian et al., 2014, Zhang et al., 2014) from the Pliocene to today, while faunal (planktonic foraminifera) sea surface temperature estimates (Dowsett, 2007) and Mg/Ca data measured in planktonic foraminifera (Wara et al., 2005) on the other hand indicate the absence of any long-term temperature trends. It has been suggested that Mg/Ca temperatures could on these time scales be biased by long-term changes of the Mg/Ca ratio of seawater (Evans et al., 2016). To test the influence of the proposed seawater changes on Mg/Ca we combined data from two independent temperature proxies, Mg/Ca and clumped isotopes, measured on two species of planktonic foraminifera from IODP Site U1488 in the central WPWP. Our study finds good agreement between both proxies thereby verifying the validity of Mg/Ca records from the WPWP and confirming the absence of a Plio-Pleistocene cooling trend for the WPWP. This finding suggests that the persistent disagreement between foraminifer-based proxies such as Mg/Ca and biomarker data might be caused by different environmental parameters being recorded in the two archives.</p><p> </p><p>References:</p><p>O’Brien CL, Foster GL, Martínez-Botí MA, Abell R, Rae JWB, Pancost RD. High sea surface temperatures in tropical warm pools during the Pliocene. Nature Geoscience. 2014;7(8):606-11.</p><p>Zhang YG, Pagani M, Liu Z. A 12-million-year temperature history of the tropical Pacific Ocean. Science. 2014;344(6179):84-7.</p><p>Dowsett H. Faunal re-evaluation of Mid-Pliocene conditions in the western equatorial Pacific. Micropaleontology. 2007;53(6):447-56.</p><p>Wara MW, Ravelo AC, Delaney ML. Permanent El Nino-like conditions during the Pliocene warm period. Science. 2005;309(5735):758-61.</p><p>Evans D, Brierley C, Raymo ME, Erez J, Müller W. Planktic foraminifera shell chemistry response to seawater chemistry: Pliocene–Pleistocene seawater Mg/Ca, temperature and sea level change. Earth and Planetary Science Letters. 2016;438:139-48.</p>


1998 ◽  
Vol 43 (S1) ◽  
pp. 89-89
Author(s):  
G. R. Min ◽  
F. W. Taylor ◽  
J. Recy ◽  
G. S. Burr ◽  
R. L. Edwards ◽  
...  

2009 ◽  
Vol 48 (10) ◽  
pp. 2054-2068 ◽  
Author(s):  
Ryoko Oda ◽  
Manabu Kanda

Abstract Sea surface temperature (SST) and air temperature were measured in situ in Tokyo Bay. These measurements were made with high spatial and temporal resolutions between November 2006 and September 2007. The analysis of these data revealed 1) the seasonal and diurnal variations of SST and air temperature, and 2) the physical process by which Tokyo Bay lowers urban air temperature in summer. The following were the major findings obtained: 1) the diurnal amplitude of SST was as large as 5.5°C; 2) abrupt increases of SST occurred at the head and mouth of the bay that were due to heated water discharge and the Kuroshio, respectively; 3) the values of the satellite-based objectively analyzed SSTs were higher than those of the in situ SSTs, especially in winter; 4) the relationship between SST and air temperature was classified into three seasonal modes—winter, transient, and summer—and each mode was associated with the seasonal stability condition of the near-surface water; 5) the strong southwesterly wind over the bay in summer decreased the SST mainly because of increased turbulent mixing at the water surface, thereby increasing downward sensible heat flux up to −100 W m−2; 6) the lower SSTs in summer lowered the air temperature, but only for the urban atmosphere near the coast, and no effect was detected at 20 km inland; and 7) the horizontal gradient of air temperature over the land intensified with increasing wind speed.


Sign in / Sign up

Export Citation Format

Share Document