Volume transport from the Japan Basin to the Yamato Basin in the abyssal Japan Sea inferred from direct current observations

2016 ◽  
Vol 73 (2) ◽  
pp. 235-247 ◽  
Author(s):  
Tomoharu Senjyu ◽  
Takafumi Aramaki
2010 ◽  
Vol 115 (C12) ◽  
Author(s):  
Satoshi Fujita ◽  
Kenshi Kuma ◽  
Satoko Ishikawa ◽  
Shotaroh Nishimura ◽  
Yuta Nakayama ◽  
...  

2016 ◽  
Vol 46 (3) ◽  
pp. 937-946 ◽  
Author(s):  
Sok Kuh Kang ◽  
Young Ho Seung ◽  
Jong Jin Park ◽  
Jae-Hun Park ◽  
Jae Hak Lee ◽  
...  

AbstractTrajectories of Argo floats deployed in the East/Japan Sea from 2001 to 2014 reveal that the middepth gyral circulation pattern of the Japan basin, the central part of the East/Japan Sea, undergoes a seasonal variation. The middepth circulation of the Japan basin is found to be characterized usually by the gyres trapped to the east of the Bogorov Rise (E-gyres) and those extending farther westward into the whole basin (BW-gyres). The E-gyre trajectories are generally associated with the turning of the floats toward deeper regions off the isobaths. This occurs in winter either on the northern or eastern side of the eastern Japan basin. It seems that the upstream part of the otherwise BW-gyre is subject to a strong negative wind stress curl in winter, and there the circulating water columns are driven toward the deeper region, thus triggering the formation of the E-gyre. The topographic effect associated with the Bogorov Rise seems to interfere thereafter in the process of determining the passage of the E-gyre. Otherwise, the water columns continue to flow along the isobaths, hence maintaining the BW-gyre. To the knowledge of the authors, this is the first observational evidence of seasonal variability in the middepth gyral circulation pattern in the East/Japan Sea. It suggests that oceanic middepth circulation, usually known to be quasi steady or slowly varying on climatological time scales, might also undergo a significant seasonal variation as it does in the East/Japan Sea.


2001 ◽  
Vol 106 (C6) ◽  
pp. 11437-11450 ◽  
Author(s):  
Tatsuro Watanabe ◽  
Mitsuyuki Hirai ◽  
Haruya Yamada

2013 ◽  
Vol 67-68 ◽  
pp. 199-206 ◽  
Author(s):  
Kazuo Nakahigashi ◽  
Masanao Shinohara ◽  
Tomoaki Yamada ◽  
Kenji Uehira ◽  
Kimihiro Mochizuki ◽  
...  

2020 ◽  
Author(s):  
Zhi Dong ◽  
Xuefa Shi ◽  
Jianjun Zou ◽  
Yanguang Liu ◽  
Ruxi Dou ◽  
...  

<p>The formation of intermediate and deep water plays a key role in regulating climate changes at a variety of time scales through the heat redistribution and carbon cycling. The Japan Sea has unique water-mass characteristics in the North Pacific with its own deep-water formation within the Sea itself called Japan Sea Proper Water (JSPW). Latitudinal ventilation changes in the Japan Sea were reconstructed using radiolarian assemblage from three sediment cores, extending from the southwestern, central to northwestern Japan Sea. Here, we present downcore faunal records spanning the last 25 ka as well as other existing ventilation records in the Japan Sea, and provide reliable evidence to evaluate the potential controlling mechanism that lead to onset and interruption of JSPW ventilation. Taking all together, we argue that radiolarian assemblage records have revealed a distinct basin-scale transition in deep-water conditions from anoxic to oxic during the deglaciation related to changing surface hydrography. However, it should be recognized that there is significant potential for bias in the timing of the ventilation changes among regions. Deep ventilation in the central Japan Sea has been in an interglacial mode during the Bølling/Allerød presumably related to northward volume transport of the Tsushima Warm Current. Moreover, the decrease of JSPW Assemblage at the B/A in southwestern Japan Sea was attributed to higher export productivity, facilitating suboxic deepwater condition through enhanced consumption of oxygen, which was probably caused by coastal upwelling. In contrast, the weakening ventilation of the northwestern Japan Sea during the B/A and YD periods was probably caused by the blocking effect of the sea ice. Note: This study was supported by the National Natural Science Foundation of China (Grant No. 41420104005, U1606401) and National Program on Global Change and Air-Sea Interaction (GASI-GEOGE-04).</p>


2004 ◽  
Vol 56 (5) ◽  
pp. 501-510 ◽  
Author(s):  
Takeshi Sato ◽  
Masanao Shinohara ◽  
Boris Y. Karp ◽  
Ruslan G. Kulinich ◽  
Nobuhiro Isezaki

1992 ◽  
Vol 19 (20) ◽  
pp. 2027-2030 ◽  
Author(s):  
Naoshi Hirata ◽  
Boris Ya. Karp ◽  
Takashi Yamaguchi ◽  
Toshihiko Kanazawa ◽  
Kiyoshi Suyehiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document