Evaluation of alkene degradation in the detailed tropospheric chemistry mechanism, MCM v3, using environmental chamber data

2006 ◽  
Vol 55 (1) ◽  
pp. 55-79 ◽  
Author(s):  
P. G. Pinho ◽  
C. A. Pio ◽  
W. P. L. Carter ◽  
M. E. Jenkin
2005 ◽  
Vol 39 (38) ◽  
pp. 7251-7262 ◽  
Author(s):  
R HYNES ◽  
D ANGOVE ◽  
S SAUNDERS ◽  
V HAVERD ◽  
M AZZI

2008 ◽  
Vol 8 (21) ◽  
pp. 6453-6468 ◽  
Author(s):  
A. Metzger ◽  
J. Dommen ◽  
K. Gaeggeler ◽  
J. Duplissy ◽  
A. S. H. Prevot ◽  
...  

Abstract. The degradation mechanism of 1,3,5-trimethyl- benzene (TMB) as implemented in the Master Chemical Mechanism version 3.1 (MCM) was evaluated using data from the environmental chamber at the Paul Scherrer Institute. The results show that the MCM provides a consistent description of the photo-oxidation of TMB/NOx mixtures for a range of conditions. In all cases the agreement between the measurement and the simulation decreases with decreasing VOC-NOx ratio and in addition with increasing precursor concentration. A significant underestimation of the decay rate of TMB and thus underestimation of reactivity in the system, consistent with results from previous appraisals of the MCM, was observed. Much higher nitrous acid (HONO) concentrations compared to simulations and expected from chamber characterization experiments were measured during these smog chamber experiments. A light induced NO2 to HONO conversion at the chamber walls is suggested to occur. This photo-enhanced NO2 to HONO conversion with subsequent HONO photolysis enhances the reactivity of the system. After the implementation of this reaction in the model it describes the decay of TMB properly. Nevertheless, the model still over-predicts ozone at a later stage of the experiment. This can be attributed to a too slow removal of NO2. It is also shown that this photo-enhanced HONO formation is not restricted to TMB photo-oxidation but also occurs in other chemical systems (e.g. α-pinene). However, the influence of HONO as a source of OH radicals is less important in these more reactive systems and therefore the importance of the HONO chemistry is less obvious.


2008 ◽  
Vol 8 (3) ◽  
pp. 11567-11607 ◽  
Author(s):  
A. Metzger ◽  
J. Dommen ◽  
K. Gaeggeler ◽  
J. Duplissy ◽  
A. S. H. Prevot ◽  
...  

Abstract. The degradation mechanism of 1,3,5-trimethylbenzene (TMB) as implemented in the Master Chemical Mechanism version 3.1 (MCM) was evaluated using data from the environmental chamber at the Paul Scherrer Institute. The results show that the MCM provides a consistent description of the photo-oxidation of TMB/NOx mixtures for a range of conditions. In all cases the agreement between the measurement and the simulation decreases with decreasing VOC-NOx ratio and in addition with increasing precursor concentration. A significant underestimation of the decay rate of TMB and thus underestimation of reactivity in the system, consistent with results from previous appraisals of the MCM, was observed. Much higher nitrous acid (HONO) concentrations compared to simulations and expected from chamber characterization experiments were measured during these smog chamber experiments. A light induced NO2 to HONO conversion at the chamber walls is suggested to occur. This photo-enhanced NO2 to HONO conversion with subsequent HONO photolysis enhances the reactivity of the system. After the implementation of this reaction in the model it describes the decay of TMB properly. Nevertheless, the model still over-predicts ozone at a later stage of the experiment. This can be attributed to a too slow removal of NO2. It is also shown that this photo-enhanced HONO formation is not restricted to TMB photo-oxidation but also occurs in other chemical systems (e.g. α-pinene). However, the influence of HONO as a source of OH radicals is less important in these more reactive systems and therefore the importance of the HONO chemistry is less obvious.


Author(s):  
D.R. Hill ◽  
J.R. McCurry ◽  
L.P. Elliott ◽  
G. Howard

Germination of Euonymous americanus in the laboratory has previously been unsuccessful. Ability to germinate Euonymous americanus. commonly known as the american strawberry bush, is important in that it represents a valuable food source for the white-tailed deer. Utilizing the knowledge that its seeds spend a period of time in the rumin fluid of deer during their dormant stage, we were successful in initiating germination. After a three month drying period, the seeds were placed in 25 ml of buffered rumin fluid, pH 8 at 40°C for 48 hrs anaerobically. They were then allowed to dry at room temperature for 24 hrs, placed on moistened filter paper and enclosed within an environmental chamber. Approximately four weeks later germination was detected and verified by scanning electron microscopy; light microscopy provided inadequate resolution. An important point to note in this procedure is that scarification, which was thought to be vital for germination, proved to be unnecessary for successful germination to occur. It is believed that germination was propagated by the secretion of enzymes or prescence of acids produced by microorganisms found in the rumin fluid since sterilized rumin failed to bring about germination.


Author(s):  
D. Barnard ◽  
D. Rexford ◽  
W.F. Tivol ◽  
J.N. Turner

A side-entry differentially pumped environmental chamber (SEDPEC) has been designed and constructed for the AEI-EM7 high-voltage electron microscope (HVEM). The SEDPEC has been tested in the same way as previous chambers for the HVEM. In contrast to the lengthy procedures necessary to install previous environmental chambers in the HVEM, the SEDPEC can be installed in about one half hour. Thus a user can install the SEDPEC, use it for a day and return the HVEM to normal operating status without causing delays for other HVEM users. This is particularly important for our facility, which is supported as a national biotechnology resource by the NIH.


2001 ◽  
Vol 32 ◽  
pp. 269-270
Author(s):  
J.E. WILLIAMS ◽  
F.J. DENTENER ◽  
A.R. van den BERG

Sign in / Sign up

Export Citation Format

Share Document