Synthesis and XRD of Novel Ni4(µ3-O)4 Twist Cubane Cluster Using Three NNO Mixed Ligands: Hirshfeld, Spectral, Thermal and Oxidation Properties

Author(s):  
Abderrahim Titi ◽  
Hiroki Oshio ◽  
Rachid Touzani ◽  
Messali Mouslim ◽  
Abdelkader Zarrouk ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1023
Author(s):  
María Elena Sánchez-Vergara ◽  
Leon Hamui ◽  
Elizabeth Gómez ◽  
Guillermo M. Chans ◽  
José Miguel Galván-Hidalgo

The synthesis of four mononuclear heptacoordinated organotin (IV) complexes of mixed ligands derived from tridentated Schiff bases and pyrazinecarboxylic acid is reported. This organotin (IV) complexes were prepared by using a multicomponent reaction, the reaction proceeds in moderate to good yields (64% to 82%). The complexes were characterized by UV-vis spectroscopy, IR spectroscopy, mass spectrometry, 1H, 13C, and 119Sn nuclear magnetic resonance (NMR) and elemental analysis. The spectroscopic analysis revealed that the tin atom is seven-coordinate in solution and that the carboxyl group acts as monodentate ligand. To determine the effect of the substituent on the optoelectronic properties of the organotin (IV) complexes, thin films were deposited, and the optical bandgap was obtained. A bandgap between 1.88 and 1.98 eV for the pellets and between 1.23 and 1.40 eV for the thin films was obtained. Later, different types of optoelectronic devices with architecture “contacts up/base down” were manufactured and analyzed to compare their electrical behavior. The design was intended to generate a composite based on the synthetized heptacoordinated organotin (IV) complexes embedded on the poly(3,4-ethylenedyoxithiophene)-poly(styrene sulfonate) (PEDOT:PSS). A Schottky curve at low voltages (<1.5 mV) and a current density variation of as much as ~3 × 10−5 A/cm2 at ~1.1 mV was observed. A generated photocurrent was of approximately 10−7 A and a photoconductivity between 4 × 10−9 and 7 × 10−9 S/cm for all the manufactured structures. The structural modifications on organotin (IV) complexes were focused on the electronic nature of the substituents and their ability to contribute to the electronic delocalization via the π system. The presence of the methyl group, a modest electron donor, or the non-substitution on the aromatic ring, has a reduced effect on the electronic properties of the molecule. However, a strong effect in the electronic properties of the material can be inferred from the presence of electron-withdrawing substituents like chlorine, able to reduce the gap energies.


2021 ◽  
Vol 45 (5) ◽  
pp. 2742-2753
Author(s):  
Nishithendu Bikash Nandi ◽  
Atanu Purkayastha ◽  
Shaktibrata Roy ◽  
Julia Kłak ◽  
Rakesh Ganguly ◽  
...  

A new doubly opened 4 + 2 Cu4O4 cubane cluster exhibits strong antiferromagnetic exchange coupling with J1 = −110.1 cm−1, and J2 = −27.1 cm−1.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 316-326
Author(s):  
Bing Wang ◽  
Minxian Shi ◽  
Jie Ding ◽  
Zhixiong Huang

Abstract In this work, octamercapto polyhedral oligomeric silsesquioxane (POSS-8SH) and octaphenol polyhedral oligomeric silsesquioxane (POSS-8Phenol) were successfully synthetized. POSS-8Phenol was added into the synthesis process of liquid thermoset phenolic resin (PR) to obtain POSS-modified phenolic resin (POSS-PR). Chemical structures of POSS-8SH, POSS-8Phenol, and POSS-PR were confirmed by FTIR and 1H-NMR. TG and DTG analysis under different atmosphere showed that char yield of POSS-PR at 1,000°C increased from 58.6% to 65.2% in N2, which in air increased from 2.3% to 26.9% at 700°C. The maximum pyrolysis temperature in air increased from 543°C to 680°C, which meant better anti-oxidation properties. XRD results confirmed both POSS-8Phenol and POSS-PR-generated crystalline SiO2 in air, which could explain the improvement of anti-oxidation properties. SEM showed that the POSS-PR had phase separation during curing process. Finally, carbon fiber fabric-reinforced POSS-PR (C-POSS-PR) was prepared to verify the anti-oxidation properties of POSS-PR.


2021 ◽  
pp. 159877
Author(s):  
Weiqiang Tang ◽  
Rongjie Yang ◽  
Jinghui Hu ◽  
Jianmin Li ◽  
Fei Xiao ◽  
...  

2021 ◽  
Vol 289 ◽  
pp. 129378
Author(s):  
Wei Liu ◽  
Baoqin Wang ◽  
Chenchen Cui ◽  
Yiwen Zhang ◽  
Lixuan Wang ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chenhui Wang ◽  
Dengbao Han ◽  
Junhui Wang ◽  
Yingguo Yang ◽  
Xinyue Liu ◽  
...  

AbstractIn the field of perovskite light-emitting diodes (PeLEDs), the performance of blue emissive electroluminescence devices lags behind the other counterparts due to the lack of fabrication methodology. Herein, we demonstrate the in situ fabrication of CsPbClBr2 nanocrystal films by using mixed ligands of 2-phenylethanamine bromide (PEABr) and 3,3-diphenylpropylamine bromide (DPPABr). PEABr dominates the formation of quasi-two-dimensional perovskites with small-n domains, while DPPABr induces the formation of large-n domains. Strong blue emission at 470 nm with a photoluminescence quantum yield up to 60% was obtained by mixing the two ligands due to the formation of a narrower quantum-well width distribution. Based on such films, efficient blue PeLEDs with a maximum external quantum efficiency of 8.8% were achieved at 473 nm. Furthermore, we illustrate that the use of dual-ligand with respective tendency of forming small-n and large-n domains is a versatile strategy to achieve narrow quantum-well width distribution for photoluminescence enhancement.


1999 ◽  
Vol 38 (1) ◽  
pp. 159-165
Author(s):  
Ziqiang Lei ◽  
Xiangen Han ◽  
Yan Zhang ◽  
Rongmin Wang ◽  
Yonghong Cao ◽  
...  

Author(s):  
Yan Wang ◽  
Cheng Chen ◽  
Huisheng Liu ◽  
Dan-Ling Sun ◽  
Wei-Wei Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document