nanocrystal films
Recently Published Documents


TOTAL DOCUMENTS

273
(FIVE YEARS 100)

H-INDEX

40
(FIVE YEARS 7)

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4389
Author(s):  
Xiao Xiao ◽  
Jie Chen ◽  
Zhe Ling ◽  
Jiaqi Guo ◽  
Jianbin Huang ◽  
...  

The exploration of functional materials relies greatly on the understanding of material structures and nanotechnologies. In the present work, chiral nematic cellulose nanocrystal (CNC) films were prepared by incorporation with four types of amino acids (AAs, glycine, histidine, phenylalanine, and serine) via evaporation-induced self-assembly. The films present ideal iridescence and birefringence that can be tuned by the amount of AAs added. The intercalation of AAs enlarged the pitch values, contributing to the red-shift trend of the reflective wavelength. Among the AAs, serine presented the most compatible intercalation into cellulose crystals. Interestingly, histidine and phenylalanine composite films showed high shielding capabilities of UV light in diverse wavelength regions, exhibiting multi-optical functions. The sustainable preparation of chiral nematic CNC films may provide new strategies for materials production from biocompatible lignocellulose.


Author(s):  
Tawney Knecht ◽  
Shannon W. Boettcher ◽  
James Hutchison

Abstract The electrochemical reduction of CO2 into fuels using renewable electricity presents an opportunity to utilize captured CO2. Electrocatalyst development has been the primary focus of research in this area. This is especially true at the nanoscale, where researchers have focused on understanding nanostructure-property relationships. However, electrocatalyst structure may evolve during operation. Indium- and tin-based oxides have been widely studied as electrocatalysts for CO2 reduction to formate, but evolution of these catalysts during operation is not well-characterized. Here, we report the evolution of nanoscale structure of tin-doped indium oxide nanocrystals under CO2 reduction conditions. We show that sparse monolayer nanocrystal films desorb from the electrode upon charging, but thicker nanocrystal films remain, likely due to increased number of physical contacts. Upon applying a cathodic voltage of -1.0 V vs RHE or greater, the original 10-nm diameter nanocrystals are no longer visible, and instead form a larger microstructural network. Elemental analysis suggests the network is an oxygen-deficient indium-tin metal alloy. We hypothesize that this morphological evolution is the result of nanocrystal sintering due to oxide reduction. These data provide insights into the morphological evolution tin-doped indium oxide nanocrystal electrocatalysts under reducing conditions and highlight the importance of post-electrochemical structural characterization of electrocatalysts.


MRS Advances ◽  
2021 ◽  
Author(s):  
Brahim El Filali ◽  
Tetyana Torchynska ◽  
Georgiy Polupan ◽  
José Alberto Andraca Adame ◽  
Jorge Luis Ramirez Garcia

2021 ◽  
Author(s):  
Wenna Ge ◽  
Zhixin Feng ◽  
Fusheng Zhang ◽  
Xiangge Bai ◽  
Shile Feng ◽  
...  

Abstract Cellulose nanocrystals (CNCs) self-assembled into a chiral nematic structure film is an advanced platform for the fabrication of fascinating sensing, photonic and chiral nematic materials. Despite extensive progress in the functions of CNCs, their chemoselectivity has rarely been reported. Here, we exploit a brand-new perspective of CNCs in chemoselectivity, which shows sensitive selectivity even between isomers of monosaccharides and disaccharide by generating discernible crystal patterns. This sensitive selectivity of glucose homologs is attributed to the selective interaction of carbohydrate–carbohydrate, which enables the tune of the photonic properties and chiral mesoporous structures. Moreover, based on the chemoselectivity, chiral mesoporous structures with tunable specific surface areas are assembled from CNC suspensions and glucose homologs. We envision that the sensitive chemoselectivity of CNC films could provide insights into the recognition of carbohydrates and the preparation of mesoporous carbon in numerous practical applications.


2021 ◽  
Author(s):  
Benjamin E. Droguet ◽  
Hsin-Ling Liang ◽  
Bruno Frka-Petesic ◽  
Richard M. Parker ◽  
Michael F. L. De Volder ◽  
...  

2021 ◽  
pp. 162974
Author(s):  
Do-Yeong Shin ◽  
Taehwan Kim ◽  
Ozgun Akyuz ◽  
Hilmi Volkan Demir ◽  
In-Hwan Lee

2021 ◽  
pp. 133809
Author(s):  
Akash Fulari ◽  
Ngoc Thanh Duong ◽  
Duc Anh Nguyen ◽  
Yongcheol Jo ◽  
Sangeun Cho ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1324
Author(s):  
Xiao-Yao Wei ◽  
Tao Lin ◽  
Le Wang ◽  
Xue-Feng Yin

A cellulose nanocrystal (CNC) suspension can form liquid crystal films with unique self-assembly behaviors. This gives CNC films a special iridescence, which has potential in many aspects, but the brittleness of pure CNC films limits their application. In this work, we propose a simple physical mixing method to obtain CNC film by adding D-sorbitol as a plasticizer. We first found that low D-sorbitol content (less than 6 wt% in CNC/DS composite solution) did not make a significant difference compared with pure CNC films in optical performance and, at the same time, the mechanical properties of the CNC films were improved. The various low contents of D-sorbitol can be well dispersed in CNC aqueous suspension, and the wavelength of the selectively reflected phenomenon is relatively stable and slightly decreased at 5 nm for concentrations from 0 to 6%. This phenomenon is opposite to that generally reported, where the wavelength of the selective reflected phenomenon increases obviously with the increase in plastic content. The pitch of the chiral structure decreased from 406 to 362 nm with an increase in D-sorbitol concentration. When the content of D-sorbitol reached 4%, the tensile strength, elongation at break, and Young modulus increased to 39.9 Mpa, 3.00%, and 2.99 GPa, respectively.


Sign in / Sign up

Export Citation Format

Share Document