scholarly journals The Crystal Structures of Two Hydro-closo-Borates with Divalent Tin in Comparison: Sn(H2O)3[B10H10] · 3 H2O and Sn(H2O)3[B12H12] · 4 H2O

Author(s):  
Fabian M. Kleeberg ◽  
Lucas W. Zimmermann ◽  
Thomas Schleid

AbstractSingle crystals of Sn(H2O)3[B10H10] · 3 H2O and Sn(H2O)3[B12H12] · 4 H2O are easily accessible by reactions of aqueous solutions of the acids (H3O)2[B10H10] and (H3O)2[B12H12] with an excess of tin metal powder after isothermal evaporation of the clear brines. Both compounds crystallize with similar structures in the triclinic system with space group P$$\bar{1 }$$ 1 ¯ and Z = 2. The crystallographic main features are electroneutral $${}_{\infty }^{1} \{$$ ∞ 1 { Sn(H2O)3/1[B10H10]3/3} and $${}_{\infty }^{1} \{$$ ∞ 1 { Sn(H2O)3/1[B12H12]3/3} double chains running along the a-axes. Each Sn2+ cation is coordinated by three water molecules of hydration (d(Sn–O) = 221–225 pm for the B10 and d(Sn–O) = 222–227 pm for the B12 compound) and additionally by hydridic hydrogen atoms of the three nearest boron clusters (d(Sn–H) = 281–322 pm for the B10 and d(Sn–H) = 278–291 pm for the B12 compound), which complete the coordination sphere. Between these tin(II)-bonded water and the three or four interstitial crystal water molecules, classical bridging hydrogen bonds are found, connecting the double chains to each other. Furthermore, there is also non-classical hydrogen bonding between the anionic [BnHn]2− (n = 10 and 12) clusters and the crystal water molecules pursuant to B–Hδ−$$\cdots$$ ⋯ δ+H–O interactions often called dihydrogen bonds.

1977 ◽  
Vol 32 (11) ◽  
pp. 1358-1359 ◽  
Author(s):  
Werner H. Baur

The configuration of least electrostatic energy for the hydrogen atoms in both polytypes of MoO2Cl2 · H2O was obtained by systematic variation of the orientations of the water molecules. The internal geometry of the H2O group was kept constant throughout the variation. The hydrogen bonds are of the bifurcated type: [xxx]


1992 ◽  
Vol 47 (11) ◽  
pp. 1602-1608 ◽  
Author(s):  
Adalbert Lossin ◽  
Gerd Meyer

Pr(CH3COO)3· 1.5 H2O crystallizes with the triclinic system, P̄1̄ (no. 2), Z = 4, a = 844.2(4), b = 1009.8(5), c = 1340.1(7) pm, α = 87.10(5), β = 76.25(6), y = 75.65(2)°, Vm = 161.9(1) cm3/mol, R = 0.049, Rw = 0.035. The crystal structure contains centrosymmetric dimers {[Pr(CH3COO)4(H2O)]-}2 and one-dimensional chains ∞1[Pr(CH3COO)2(H2O)]+ along the [100] direction. Both units are built up by bridging acetate groups. The chains are linked by the dimers to layers parallel (101) sharing oxygen atoms. Crystal water molecules between these planes form hydrogen bonds to neighbouring layers.


1985 ◽  
Vol 63 (12) ◽  
pp. 3322-3327 ◽  
Author(s):  
D. Adhikesavalu ◽  
T. Stanley Cameron ◽  
Osvald Knop

The crystal structure of thomsenolite, NaCaAlF6•H2O, has been redetermined to establish the hydrogen-bonding scheme in this mineral. Both hydrogen atoms participate in branched [Formula: see text] bonds. The hydrogen bonds link the AlF6, octahedra to form infinite chains ||b, which in turn are cross-linked to form infinite double sheets {[AlF6] + Ca}—(H2O)—{[AlF6] + Ca}||(001). The Na atoms are located exclusively in layers ||(001) which separate the double sheets. A detailed comparison of thomsenolite with its dimorph, pachnolite, shows that the structure of pachnolite is obtained in essence by interchanging the positions of one half of the Na atoms and one half of the water molecules in thomsenolite. The two-dimensional, layerlike hydrogen-bonding network in thomsenolite is thereby changed to one of a three-dimensional character in pachnolite. Other features of the two structures, including the Al—F and [Formula: see text] distances, are compared and discussed in some detail.


1990 ◽  
Vol 45 (11) ◽  
pp. 1499-1502 ◽  
Author(s):  
Christian Robl ◽  
Stephanie Hentschel

Colorless orthorhombic single crystals of Be[C2(COO)2] · 4 H2O were grown in aqueous silica gel. Space group Cmcm, α = 1004.7(1), b = 675.0(1), c = 1262.4(2) pm, Rg = 0.0264. The crystal structure consists of Be(H2O)42+ tetrahedra and planar [C2(COO)2]2- anions linked together by strong asymmetric hydrogen bonds. A layer-like arrangement extending parallel (010) made up by [C2(COO)2]2- anions and hydrogen bound water molecules of the Be(H2O)42+ tetrahedra is the primary structural feature of Be[C2(COO)2] · 4H2O. These layers are stacked and interlinked by coordinative bonds between Be2+ and H2O to yield a rigid three-dimensional framework. Thermal decomposition commences with endothermic loss of water of crystallisation at 160 °C followed by several steps of exothermic degradation yielding finally a soot-like amorphous residue.


2012 ◽  
Vol 67 (1) ◽  
pp. 5-10
Author(s):  
Guido J. Reiss ◽  
Martin van Megen

The reaction of bipyridine with hydroiodic acid in the presence of iodine gave two new polyiodide-containing salts best described as 4,4´-bipyridinium bis(triiodide), C10H10N2[I3]2, 1, and bis(4,4´-bipyridinium) diiodide bis(triiodide) tris(diiodine) solvate dihydrate, (C10H10N2)2I2[I3]2 · 3 I2 ·2H2O, 2. Both compounds have been structurally characterized by crystallographic and spectroscopic methods (Raman and IR). Compound 1 is composed of I3 − anions forming one-dimensional polymers connected by interionic halogen bonds. These chains run along [101] with one crystallographically independent triiodide anion aligned and the other triiodide anion perpendicular to the chain direction. There are no classical hydrogen bonds present in 1. The structure of 2 consists of a complex I144− anion, 4,4´-bipyridinium dications and hydrogen-bonded water molecules in the ratio of 1 : 2 : 2. The I144− polyiodide anion is best described as an adduct of two iodide and two triiodide anions and three diiodine molecules. Two 4,4´-bipyridinium cations and two water molecules form a cyclic dimer through N-H· · ·O hydrogen bonds. Only weak hydrogen bonding is found between these cyclic dimers and the polyiodide anions.


2018 ◽  
Vol 74 (9) ◽  
pp. 1295-1298
Author(s):  
Jan Fábry

Two of the constituent molecules in the title structure, 2C6H7N2O+·HPO3 2−·H2O, i.e. the phosphite anion and the water molecule, are situated on a symmetry plane. The molecules are held together by moderate N—H...O and O—H...N, and weak O—H...O and C—H...Ocarbonyl hydrogen bonds in which the amide and secondary amine groups, and the water molecules are involved. The structural features are usual, among them the H atom bonded to the P atom avoids hydrogen bonding.


IUCrData ◽  
2016 ◽  
Vol 1 (10) ◽  
Author(s):  
S. Naveen ◽  
Seranthimata Samshuddin ◽  
Manuel Rodrigues ◽  
Dandavathi Arunkumar ◽  
N. K. Lokanath ◽  
...  

In the title hydrated hydrazine compound, C12H17N3O·H2O, the C=N bond adopts an E conformation. In the crystal, water molecules bridge the hydrazine molecules, via N—H...O and O—H...O hydrogen bonds, forming sheets parallel to the bc plane. There are C—H...π interactions present within the sheets, and further C—H...π interactions link the sheets to form a three-dimensional structure.


Author(s):  
Graham Smith ◽  
Urs D. Wermuth

In the structure of the brucinium salt of 4-aminophenylarsonic acid (p-arsanilic acid), systematically 2,3-dimethoxy-10-oxostrychnidinium 4-aminophenylarsonate tetrahydrate, (C23H27N2O4)[As(C6H7N)O2(OH)]·4H2O, the brucinium cations form the characteristic undulating and overlapping head-to-tail layered brucine substructures packed along [010]. The arsanilate anions and the water molecules of solvation are accommodated between the layers and are linked to them through a primary cation N—H...O(anion) hydrogen bond, as well as through water O—H...O hydrogen bonds to brucinium and arsanilate ions as well as bridging water O-atom acceptors, giving an overall three-dimensional network structure.


2014 ◽  
Vol 70 (5) ◽  
pp. m172-m172 ◽  
Author(s):  
Wojciech Starosta ◽  
Janusz Leciejewicz

The structure of the title compound, [Li2(C8H2N2O8)(H2O)4]·H2O, is composed of dinuclear molecules in which the ligand bridges two symmetry-related LiIions, each coordinated also by two water O atoms, in anO,N,O′-manner. The Li and N atoms occupy special positions on twofold rotation axes, whereas a crystal water molecule is located at the intersection of three twofold rotation axes. The LiIcation shows a distorted trigonal–bipyramidal coordination. Two carboxylate groups remain protonated and form short interligand hydrogen bonds. The molecules are held together by a network of hydrogen bonds in which the coordinating and solvation water molecules act as donors and carboxylate O atoms as acceptors, forming a three-dimensional architecture.


1987 ◽  
Vol 42 (8) ◽  
pp. 972-976 ◽  
Author(s):  
Christian Robl

AbstractSingle crystals of EA[Q(NO2)2O4] · 4H2O (EA = Ca. Sr) were grown in aqueous silicagel. Ca2+ has CN 8. It is surrounded by 4 oxygen atoms of two bis-chelating [C6(NO2)2O4]2- ions and 4 water molecules, which form a distorted, bi-capped trigonal prism. Sr2+ is coordinated similarly, with an additional water molecule joining the coordination sphere to yield CN 8+1. Corrugated chains extending along [010] and consisting of EA2+ and nitranilate ions are the main feature of the crystal structure. Adjacent chains are interlinked by hydrogen bonds.


Sign in / Sign up

Export Citation Format

Share Document