Uniform Polynomial Decay and Approximation in Control of a Family of Abstract Thermoelastic Models

Author(s):  
S. Nafiri
Keyword(s):  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andre M. C. Souza ◽  
Roberto F. S. Andrade

AbstractThis work investigates the dynamical properties of classical and quantum random walks on mean-field small-world (MFSW) networks in the continuous time version. The adopted formalism profits from the large number of exact mathematical properties of their adjacency and Laplacian matrices. Exact expressions for both transition probabilities in terms of Bessel functions are derived. Results are compared to numerical results obtained by working directly the Hamiltonian of the model. For the classical evolution, any infinitesimal amount of disorder causes an exponential decay to the asymptotic equilibrium state, in contrast to the polynomial behavior for the homogeneous case. The typical quantum oscillatory evolution has been characterized by local maxima. It indicates polynomial decay to equilibrium for any degree of disorder. The main finding of the work is the identification of a faster classical spreading as compared to the quantum counterpart. It stays in opposition to the well known diffusive and ballistic for, respectively, the classical and quantum spreading in the linear chain.


2018 ◽  
Vol 2020 (19) ◽  
pp. 6294-6346
Author(s):  
Jesse Gell-Redman ◽  
Andrew Hassell

Abstract This is the 3rd paper in a series [6, 9] analyzing the asymptotic distribution of the phase shifts in the semiclassical limit. We analyze the distribution of phase shifts, or equivalently, eigenvalues of the scattering matrix $S_h$, at some fixed energy $E$, for semiclassical Schrödinger operators on $\mathbb{R}^d$ that are perturbations of the free Hamiltonian $h^2 \Delta $ on $L^2(\mathbb{R}^d)$ by a potential $V$ with polynomial decay. Our assumption is that $V(x) \sim |x|^{-\alpha } v(\hat x)$ as $x \to \infty $, $\hat x = x/|x|$, for some $\alpha> d$, with corresponding derivative estimates. In the semiclassical limit $h \to 0$, we show that the atomic measure on the unit circle defined by these eigenvalues, after suitable scaling in $h$, tends to a measure $\mu $ on $\mathbb{S}^1$. Moreover, $\mu $ is the pushforward from $\mathbb{R}$ to $\mathbb{R} / 2 \pi \mathbb{Z} = \mathbb{S}^1$ of a homogeneous distribution. As a corollary we obtain an asymptotic formula for the accumulation of phase shifts in a sector of $\mathbb{S}^1$. The proof relies on an extension of results in [14] on the classical Hamiltonian dynamics and semiclassical Poisson operator to the larger class of potentials under consideration here.


Sign in / Sign up

Export Citation Format

Share Document