scholarly journals Propagation Phenomena with Nonlocal Diffusion in Presence of an Obstacle

Author(s):  
Julien Brasseur ◽  
Jérôme Coville
Keyword(s):  
2020 ◽  
Vol 20 (2) ◽  
pp. 437-458 ◽  
Author(s):  
Félix del Teso ◽  
Jørgen Endal ◽  
Juan Luis Vázquez

AbstractThe classical Stefan problem is one of the most studied free boundary problems of evolution type. Recently, there has been interest in treating the corresponding free boundary problem with nonlocal diffusion. We start the paper by reviewing the main properties of the classical problem that are of interest to us. Then we introduce the fractional Stefan problem and develop the basic theory. After that we center our attention on selfsimilar solutions, their properties and consequences. We first discuss the results of the one-phase fractional Stefan problem, which have recently been studied by the authors. Finally, we address the theory of the two-phase fractional Stefan problem, which contains the main original contributions of this paper. Rigorous numerical studies support our results and claims.


2020 ◽  
Vol 54 (4) ◽  
pp. 1373-1413 ◽  
Author(s):  
Huaiqian You ◽  
XinYang Lu ◽  
Nathaniel Task ◽  
Yue Yu

In this paper we consider 2D nonlocal diffusion models with a finite nonlocal horizon parameter δ characterizing the range of nonlocal interactions, and consider the treatment of Neumann-like boundary conditions that have proven challenging for discretizations of nonlocal models. We propose a new generalization of classical local Neumann conditions by converting the local flux to a correction term in the nonlocal model, which provides an estimate for the nonlocal interactions of each point with points outside the domain. While existing 2D nonlocal flux boundary conditions have been shown to exhibit at most first order convergence to the local counter part as δ → 0, the proposed Neumann-type boundary formulation recovers the local case as O(δ2) in the L∞ (Ω) norm, which is optimal considering the O(δ2) convergence of the nonlocal equation to its local limit away from the boundary. We analyze the application of this new boundary treatment to the nonlocal diffusion problem, and present conditions under which the solution of the nonlocal boundary value problem converges to the solution of the corresponding local Neumann problem as the horizon is reduced. To demonstrate the applicability of this nonlocal flux boundary condition to more complicated scenarios, we extend the approach to less regular domains, numerically verifying that we preserve second-order convergence for non-convex domains with corners. Based on the new formulation for nonlocal boundary condition, we develop an asymptotically compatible meshfree discretization, obtaining a solution to the nonlocal diffusion equation with mixed boundary conditions that converges with O(δ2) convergence.


2021 ◽  
Vol 10 (8) ◽  
pp. 3013-3022
Author(s):  
C.A. Gomez ◽  
J.A. Caicedo

In this work, we consider the rescaled nonlocal diffusion problem with Neumann Boundary Conditions \[ \begin{cases} u_t^{\epsilon}(x,t)=\displaystyle\frac{1}{\epsilon^2} \int_{\Omega}J_{\epsilon}(x-y)(u^\epsilon(y,t)-u^\epsilon(x,t))dy\\ \qquad \qquad+\displaystyle\frac{1}{\epsilon}\int_{\partial \Omega}G_\epsilon(x-y)g(y,t)dS_y,\\ u^\epsilon(x,0)=u_0(x), \end{cases} \] where $\Omega\subset\mathbb{R}^{N}$ is a bounded, connected and smooth domain, $g$ a positive continuous function, $J_\epsilon(z)=C_1\frac{1}{\epsilon^N}J(\frac{z}{\epsilon}), G_\epsilon(x)=C_1\frac{1}{\epsilon^N}G(\frac{x}{\epsilon}),$ $J$ and $G$ well defined kernels, $C_1$ a normalization constant. The solutions of this model have been used without prove to approximate the solutions of a family of nonlocal diffusion problems to solutions of the respective analogous local problem. We prove existence and uniqueness of the solutions for this problem by using the Banach Fixed Point Theorem. Finally, some conclusions are given.


Author(s):  
Yuming Qin ◽  
Bin Yang

In this paper, we prove the existence and regularity of pullback attractors for non-autonomous nonclassical diffusion equations with nonlocal diffusion when the nonlinear term satisfies critical exponential growth and the external force term $h \in L_{l o c}^{2}(\mathbb {R} ; H^{-1}(\Omega )).$ Under some appropriate assumptions, we establish the existence and uniqueness of the weak solution in the time-dependent space $\mathcal {H}_{t}(\Omega )$ and the existence and regularity of the pullback attractors.


2018 ◽  
Vol 39 (2) ◽  
pp. 607-625 ◽  
Author(s):  
Qiang Du ◽  
Yunzhe Tao ◽  
Xiaochuan Tian ◽  
Jiang Yang

AbstractNonlocal diffusion equations and their numerical approximations have attracted much attention in the literature as nonlocal modeling becomes popular in various applications. This paper continues the study of robust discretization schemes for the numerical solution of nonlocal models. In particular, we present quadrature-based finite difference approximations of some linear nonlocal diffusion equations in multidimensions. These approximations are able to preserve various nice properties of the nonlocal continuum models such as the maximum principle and they are shown to be asymptotically compatible in the sense that as the nonlocality vanishes, the numerical solutions can give consistent local limits. The approximation errors are proved to be of optimal order in both nonlocal and asymptotically local settings. The numerical schemes involve a unique design of quadrature weights that reflect the multidimensional nature and require technical estimates on nonconventional divided differences for their numerical analysis. We also study numerical approximations of nonlocal Green’s functions associated with nonlocal models. Unlike their local counterparts, nonlocal Green’s functions might become singular measures that are not well defined pointwise. We demonstrate how to combine a splitting technique with the asymptotically compatible schemes to provide effective numerical approximations of these singular measures.


Sign in / Sign up

Export Citation Format

Share Document