scholarly journals Decreased Root-Knot Nematode Gall Formation in Roots of the Morning Glory Ipomoea tricolor Symbiotic with Ergot Alkaloid-Producing Fungal Periglandula Sp.

2019 ◽  
Vol 45 (10) ◽  
pp. 879-887
Author(s):  
Lekeah Durden ◽  
Dong Wang ◽  
Daniel Panaccione ◽  
Keith Clay
2020 ◽  
Vol 113 (5) ◽  
pp. 2079-2085
Author(s):  
Navneet Kaur ◽  
W Rodney Cooper ◽  
Jennifer M Duringer ◽  
Arash Rashed ◽  
Ismael E Badillo-Vargas ◽  
...  

Abstract Our previous study provided correlative evidence that morning glory species harboring endophytic fungi (Periglandula) are resistant to potato psyllid [Bactericera cockerelli (Šulc)], whereas species free of fungi often allowed psyllid development. In this study, we manipulated levels of ergot alkaloids in host tissues by inoculating clippings from potato plants with extracts from morning glories that harbor Periglandula [Ipomoea leptophylla Torrey, Ipomoea imperati (Vahl) Grisebach, Ipomoea tricolor Cavanilles, Ipomoea pandurata (L.) G. F. Meyer, and Turbina corymbosa (L.)] and one species (Ipomoea alba L.) that does not harbor the endophyte. Ergot alkaloids (clavines, lysergic acid amides, and ergopeptines) were detected in potato clippings, thus confirming that leaves had taken up compounds from solutions of crude extracts. Psyllid mortality rates on inoculated clippings ranged between 53 and 93% in treatments producing biochemically detectable levels of alkaloids, when compared with 15% mortality in water controls or the alkaloid-free I. alba. We then tested synthetic analogs from each of the three alkaloid classes that had been detected in the crude extracts. Each compound was assayed by inoculating clippings of two host species (potato and tomato) at increasing concentrations (0, 1, 10, and 100 µg/ml in solution). Psyllids exhibited a large and significant increase in mortality rate beginning at the lowest two concentrations, indicating that even very small quantities of these chemicals led to mortality. Feeding by nymphs on artificial diets containing synthetic compounds resulted in 100% mortality within 48 h, irrespective of compound. Further testing of ergot alkaloids to characterize the mode of action that leads to psyllid mortality is warranted.


2007 ◽  
Vol 49 (5) ◽  
pp. 924-934 ◽  
Author(s):  
Jeong-Doo Choi ◽  
Atsushi Hoshino ◽  
Kyeung-Il Park ◽  
In-Sook Park ◽  
Shigeru Iida

1977 ◽  
Vol 45 (4) ◽  
pp. 342-348
Author(s):  
Hiroyuki MATSUI ◽  
Shoichi NAKAGAWA

2015 ◽  
Vol 105 (5) ◽  
pp. 628-637 ◽  
Author(s):  
Isabela Tristan Lourenço-Tessutti ◽  
José Dijair Antonino Souza Junior ◽  
Diogo Martins-de-Sa ◽  
Antônio Américo Barbosa Viana ◽  
Regina Maria Dechechi Gomes Carneiro ◽  
...  

Crop losses caused by nematode infections are estimated to be valued at USD 157 billion per year. Meloidogyne incognita, a root-knot nematode (RKN), is considered to be one of the most important plant pathogens due to its worldwide distribution and the austere damage it can cause to a large variety of agronomically important crops. RNA interference (RNAi), a gene silencing process, has proven to be a valuable biotechnology alternative method for RKN control. In this study, the RNAi approach was applied, using fragments of M. incognita genes that encode for two essential molecules, heat-shock protein 90 (HSP90) and isocitrate lyase (ICL). Plant-mediated RNAi of these genes led to a significant level of resistance against M. incognita in the transgenic Nicotiana tabacum plants. Bioassays of plants expressing HSP90 dsRNA demonstrated a delay in gall formation and up to 46% reduction in eggs compared with wild-type plants. A reduction in the level of HSP90 transcripts was observed in recovered eggs from plants expressing dsRNA, indicating that gene silencing persisted and was passed along to first progeny. The ICL knock-down had no clear effect on gall formation but resulted in up to 77% reduction in egg oviposition compared with wild-type plants. Our data suggest that both genes may be involved in RKN development and reproduction. Thus, in this paper, we describe essential candidate genes that could be applied to generate genetically modified crops, using the RNAi strategy to control RKN parasitism.


2005 ◽  
Vol 13 (6) ◽  
pp. 2015-2020 ◽  
Author(s):  
Mihoko Mori ◽  
Kumi Yoshida ◽  
Yasuhito Ishigaki ◽  
Tsukasa Matsunaga ◽  
Osamu Nikaido ◽  
...  

2005 ◽  
Vol 60 (11-12) ◽  
pp. 862-866 ◽  
Author(s):  
Bun-ichi Shimizu ◽  
Fukuko Saito ◽  
Hisashi Miyagawa ◽  
Ken Watanabe ◽  
Tamio Ueno ◽  
...  

A pathogenic isolate of Fusarium, F. oxysporum f. sp. batatas O-17 (PF), causes wilt disease in leaf etiolation in sweet potato (Ipomoea batatas) and morning glory (Ipomoea tricolor). Extracts from PF cultures were screened for phytotoxic components using a growth inhibition assay with morning glory seedlings. The extracts were fractionated using differential solvent extraction and two active compounds, ergosterol and fusalanipyrone, were isolated from the less-polar fraction. Growth inhibition of morning glory seedlings showed a sigmoidal doseresponse relationship, with fusalanipyrone exhibiting a two order of magnitude higher EC50 value than ergosterol (18 nᴍ and 1.6 μᴍ, respectively). Both compounds showed lower growth inhibition activity towards lettuce seedlings (Lactuca sativa). This study provides information on the phytotoxic components of PF and discusses the mechanism behind PFfinduced phytotoxicity.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 704
Author(s):  
Nurul Hafiza Al Abadiyah Ralmi ◽  
Mohammad Moneruzzaman Khandaker ◽  
Khamsah Suryati Mohd ◽  
Ali Majrashi ◽  
Ahmed M. Fallatah ◽  
...  

Hydrogen peroxide (H2O2) is a broad-range chemical catalyst that is receiving rapidly increasing attention recently due to its role as a signaling molecule in various plant physiological and biochemical processes. A study was carried out to investigate the effects of H2O2 on the plant physiology, root growth, mineral nutrient accumulation, root anatomy, and nematode control of Ficus deltoidea, a slow growing shade tolerant and nematode susceptible medicinal plant. H2O2 at 0 (control), 15, 30, 60, and 90 mM was injected into the root zone of plants weekly. The results showed that the treatment of H2O2 enhanced the accumulation of pigments, photosynthetic characteristics, and quantum yield (Fv/Fm) of F. deltoidea. H2O2 at a 90 mM treatment significantly increased seedling height, leaf number, syconium number, biomass yield, relative water content, leaf dry matter, leaf moisture, and live line fuel moisture of the plant by 1.35-, 3.02-, 3.60-, 5.13-, 1.21-, 1.12-, 1.79- and 1.06-fold, respectively, over the control plant. In addition, root growth, which includes root crown diameter, root length, root volume, root tips, number of roots and root biomass, also exhibited the highest values with an application of 90 mM of H2O2. Heavy metals arsenic (As+) and antimony (Sb+) content in the leaves decreased by 4.08-and 1.63-fold, respectively, in the 60 mM H2O2 treated plant when compared to the control plant. In addition, 90 mM H2O2 was the best treatment for magnesium (Mg2+), calcium (Ca2+), and sodium (Na+) mineral accumulation in the syconium of F. deltoidea. Treatments with 60 mM H2O2 increased magnesium (Mg2+), calcium (Ca2+), and potassium (K+) content in leaves by 14%, 19%, and 15%, respectively, over the control plant. In the study of controlling root-knot nematode, both control and 15 mM treatments produced many root galls, whereas, 60 mM H2O2 treatment produced fewer tiny root galls and 90 mM of H2O2 showed no root gall formation. H2O2 treatments reduced root gall size, root/shoot ratio, and increased the shoot biomass of plants. The treated root developed an epidermal suberin, root periderm, resin duct, cortex, druses, and a well-developed vascular system compared to the control plants. Furthermore, no nematodes were observed in the roots of treated plants with 30–90 mM H2O2. The study concluded that injections of 60–90 mM H2O2 to the root zone weekly improved plant physiology, increased mineral accumulation, root growth and development, reduced root gall formation, improved root cellular structure, and controlled root-knot nematode of F. deltoidea plants.


Sign in / Sign up

Export Citation Format

Share Document