mineral accumulation
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 15)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Dominique S. Delias ◽  
Cristiane Jovelina Da-Silva ◽  
Angelita C. Martins ◽  
Denise S. C. de Oliveira ◽  
Luciano do Amarante

Author(s):  
Manutsawan Manokieng ◽  
◽  
Arunothai Jampeetong ◽  

Abstract The effects of supplemental cations on growth, nitrogen, and mineral accumulation were assessed in Canna indica L. Similar sized 45 days-old plants were grown on a nutrient solution modified from Hoagland and Arnon (1950). The different cations were added to generate 6 treatments (n=4): (i) control (no cation added), (ii) 2.5 mM K+, (iii) 2.5 mM Ca2+, (iv) 75 mM Na+, (v) 1.25 mM K+ + 1.25 mM Ca2+ and (vi) 2.5 mM Ca2+ + 75 mM Na+, respectively. An experiment was carried out in the greenhouse for 49 days. The study found that supplemental K+ and K++ Ca2+ increased plant growth and total biomass. The highest SER was found in plants receiving supplemental K+. In contrast, SERs, leaf areas, and total biomass decreased in Na+ or Na++Ca2+ supplemented plants. The accumulated NO3- concentration (at the whole plant level) was also highest in the plants with supplemental K+ and K++Ca2+. The total nitrogen accumulation was higher in the K+, Ca2+, and K++Ca2+ supplemented plants than in the control plants. The results suggest that supplemental cations particularly K+ can enhance plant growth and nitrogen accumulation in C. indica. Therefore, cation supplementation could be an alternative technique to stimulate plant growth and improve nitrate removal in constructed wetlands. Keywords: Constructed wetland, Nitrate removal, Potassium, Tropical wetland plants


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 704
Author(s):  
Nurul Hafiza Al Abadiyah Ralmi ◽  
Mohammad Moneruzzaman Khandaker ◽  
Khamsah Suryati Mohd ◽  
Ali Majrashi ◽  
Ahmed M. Fallatah ◽  
...  

Hydrogen peroxide (H2O2) is a broad-range chemical catalyst that is receiving rapidly increasing attention recently due to its role as a signaling molecule in various plant physiological and biochemical processes. A study was carried out to investigate the effects of H2O2 on the plant physiology, root growth, mineral nutrient accumulation, root anatomy, and nematode control of Ficus deltoidea, a slow growing shade tolerant and nematode susceptible medicinal plant. H2O2 at 0 (control), 15, 30, 60, and 90 mM was injected into the root zone of plants weekly. The results showed that the treatment of H2O2 enhanced the accumulation of pigments, photosynthetic characteristics, and quantum yield (Fv/Fm) of F. deltoidea. H2O2 at a 90 mM treatment significantly increased seedling height, leaf number, syconium number, biomass yield, relative water content, leaf dry matter, leaf moisture, and live line fuel moisture of the plant by 1.35-, 3.02-, 3.60-, 5.13-, 1.21-, 1.12-, 1.79- and 1.06-fold, respectively, over the control plant. In addition, root growth, which includes root crown diameter, root length, root volume, root tips, number of roots and root biomass, also exhibited the highest values with an application of 90 mM of H2O2. Heavy metals arsenic (As+) and antimony (Sb+) content in the leaves decreased by 4.08-and 1.63-fold, respectively, in the 60 mM H2O2 treated plant when compared to the control plant. In addition, 90 mM H2O2 was the best treatment for magnesium (Mg2+), calcium (Ca2+), and sodium (Na+) mineral accumulation in the syconium of F. deltoidea. Treatments with 60 mM H2O2 increased magnesium (Mg2+), calcium (Ca2+), and potassium (K+) content in leaves by 14%, 19%, and 15%, respectively, over the control plant. In the study of controlling root-knot nematode, both control and 15 mM treatments produced many root galls, whereas, 60 mM H2O2 treatment produced fewer tiny root galls and 90 mM of H2O2 showed no root gall formation. H2O2 treatments reduced root gall size, root/shoot ratio, and increased the shoot biomass of plants. The treated root developed an epidermal suberin, root periderm, resin duct, cortex, druses, and a well-developed vascular system compared to the control plants. Furthermore, no nematodes were observed in the roots of treated plants with 30–90 mM H2O2. The study concluded that injections of 60–90 mM H2O2 to the root zone weekly improved plant physiology, increased mineral accumulation, root growth and development, reduced root gall formation, improved root cellular structure, and controlled root-knot nematode of F. deltoidea plants.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anli Liu ◽  
Siqi Li ◽  
Nana Cen ◽  
Fuying Mao ◽  
Ruixia Yang ◽  
...  

Abstract Mineral nutrients play important roles in the growth and metabolism of Ephedra intermedia, and are affected by soil factors. Fifteen elements were measured from wild E. intermedia as well as their growing soils using inductively coupled plasma mass spectroscopy to investigate the influences and characteristics of herb elements. The pH, cation exchange capacity, humus and soil mechanical composition were also determined in rhizosphere soils. Results showed that E. intermedia stems contained high N, low P concentrations in macronutrients and high Fe in micronutrients, and enriched N, S, Cl, P and Sr from soils. The 15 herb elements were affected by one or more soil factors, and K, P, Zn, Fe and Mn were important soil elements that influenced the mineral accumulation of E. intermedia. This study was useful for the artificial cultivation of wild E. intermedia.


2020 ◽  
Vol 11 ◽  
Author(s):  
Faustino Adriano Roda ◽  
Isabel Marques ◽  
Paula Batista-Santos ◽  
Maria Glória Esquível ◽  
Alexis Ndayiragije ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document