An optimization approach to solving the split feasibility problem in Hilbert spaces

Author(s):  
Simeon Reich ◽  
Truong Minh Tuyen ◽  
Mai Thi Ngoc Ha
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Haiying Li ◽  
Yulian Wu ◽  
Fenghui Wang

The split feasibility problem SFP has received much attention due to its various applications in signal processing and image reconstruction. In this paper, we propose two inertial relaxed C Q algorithms for solving the split feasibility problem in real Hilbert spaces according to the previous experience of applying inertial technology to the algorithm. These algorithms involve metric projections onto half-spaces, and we construct new variable step size, which has an exact form and does not need to know a prior information norm of bounded linear operators. Furthermore, we also establish weak and strong convergence of the proposed algorithms under certain mild conditions and present a numerical experiment to illustrate the performance of the proposed algorithms.


2018 ◽  
Vol 34 (3) ◽  
pp. 391-399
Author(s):  
NIMIT NIMANA ◽  
◽  
NARIN PETROT ◽  
◽  

In this paper we emphasize a split type problem of some integrating ideas of the split feasibility problem and the hierarchical optimization problem. Working on real Hilbert spaces, we propose a subgradient algorithm for approximating a solution of the introduced problem. We discuss its convergence results and present a numerical example.


2020 ◽  
Vol 14 (8) ◽  
pp. 2335-2353 ◽  
Author(s):  
Simeon Reich ◽  
Minh Tuyen Truong ◽  
Thi Ngoc Ha Mai

Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 712 ◽  
Author(s):  
Suthep Suantai ◽  
Nontawat Eiamniran ◽  
Nattawut Pholasa ◽  
Prasit Cholamjiak

In this paper, we focus on studying the split feasibility problem (SFP) in Hilbert spaces. Based on the CQ algorithm involving the self-adaptive technique, we introduce a three-step iteration process for approximating the solution of SFP. Then, the convergence results are established under mild conditions. Numerical experiments are provided to show the efficiency in signal processing. Some comparisons to various methods are also provided in this paper.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 119
Author(s):  
Xinglong Wang ◽  
Jing Zhao ◽  
Dingfang Hou

The split feasibility problem models inverse problems arising from phase retrievals problems and intensity-modulated radiation therapy. For solving the split feasibility problem, Xu proposed a relaxed CQ algorithm that only involves projections onto half-spaces. In this paper, we use the dual variable to propose a new relaxed CQ iterative algorithm that generalizes Xu’s relaxed CQ algorithm in real Hilbert spaces. By using projections onto half-spaces instead of those onto closed convex sets, the proposed algorithm is implementable. Moreover, we present modified relaxed CQ algorithm with viscosity approximation method. Under suitable conditions, global weak and strong convergence of the proposed algorithms are proved. Some numerical experiments are also presented to illustrate the effectiveness of the proposed algorithms. Our results improve and extend the corresponding results of Xu and some others.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Yonghong Yao ◽  
Yeong-Cheng Liou ◽  
Naseer Shahzad

The purpose of this paper is to introduce and analyze a strongly convergent method which combined regularized method, with extragradient method for solving the split feasibility problem in the setting of infinite-dimensional Hilbert spaces. Note that the strong convergence point is the minimum norm solution of the split feasibility problem.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Guash Haile Taddele ◽  
Poom Kumam ◽  
Habib ur Rehman ◽  
Anteneh Getachew Gebrie

<p style='text-indent:20px;'>In this paper, we propose two new self-adaptive inertial relaxed <inline-formula><tex-math id="M2">\begin{document}$ CQ $\end{document}</tex-math></inline-formula> algorithms for solving the split feasibility problem with multiple output sets in the framework of real Hilbert spaces. The proposed algorithms involve computing projections onto half-spaces instead of onto the closed convex sets, and the advantage of the self-adaptive step size introduced in our algorithms is that it does not require the computation of operator norm. We establish and prove weak and strong convergence theorems for the iterative sequences generated by the introduced algorithms for solving the aforementioned problem. Moreover, we apply the new results to solve some other problems. Finally, we present some numerical examples to illustrate the implementation of our algorithms and compared them to some existing results.</p>


Sign in / Sign up

Export Citation Format

Share Document