differential interferogram
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Kamel Hasni ◽  
Bachir Gourine ◽  
Houaria Namaoui ◽  
Mohammed El Amin Larabi ◽  
Saddam Housseyn Allal

Synthetic Aperture Radar (SAR) satellite imagery is a source of data widely employed in the quantification and analysis of an earthquake coseismic displacement. However, due to the signal path along the atmosphere and to other sources, the interferometric phase becomes compromised. In this work, a methodology for the correction of tropospheric and orbital errors in the differential interferogram is presented. This methodology was applied to a couple of Sentinel-1A data. The phenomenon studied was the 11th November 2018 Zeribet el Oued earthquake, Mw. 5.2 (The state of Biskra, South East of Algeria). It was possible to correct both tropospheric and orbital errors, where the dominant one was the tropospheric delay, a displacement error of 4 cm was added to the differential interferogram by this noise source. The correction of orbital error led to a better interpretation of the coseismic displacement. 


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1706
Author(s):  
Justyna Bała ◽  
Maciej Dwornik ◽  
Anna Franczyk

This article presents the results of automatic detection of subsidence troughs in synthetic aperture radar (SAR) interferograms. The detection of subsidence troughs is based on the circlet transform, which is able to detect features with circular shapes. Compared to other methods of detecting circles, the circular transform takes into account the finite data frequency. Moreover, the search shape is not limited to a circle but identified on the basis of a certain width. This is especially important in the case of detection of subsidence troughs whose shapes may not be similar to circles or ellipses but to their fragments. The transformation works directly on the image gradient; it does not require further binary segmentation or edge detection as in the case of other methods, e.g., the Hough transform. The entire processing process can be automated to save time and increase reliability compared to traditional methods. The proposed automatic detection method was tested on a differential interferogram that was generated based on Sentinel-1A SAR images of the Upper Silesian Coal Basin area. The test carried out showed that the proposed method is 20% more effective in detecting troughs that than the method using Hough transform.


Author(s):  
Andon Lazarov ◽  
Dimitar Minchev ◽  
Chavdar Minchev

In the present work, the geometry and basic parameters of interferometric synthetic aperture radar (InSAR) geophysics system are addressed. Equations of pixel height and displacement evaluation are derived. Synthetic aperture radar (SAR) signal model based on linear frequency modulation (LFM) waveform and image reconstruction procedure are suggested. The concept of pseudo InSAR measurements, interferogram, and differential interferogram generation is considered. Interferogram and differential interferogram are generated based on a surface model and InSAR measurements. Results of numerical experiments are provided.


Author(s):  
Marek GRANICZNY ◽  
Zbigniew KOWALSKI ◽  
Przemysław KOWALSKI ◽  
Maria PRZYŁUCKA

The article presents Surface deformations and changes in the Rudna mining areas registered between 28th November and 10th December 2016. These changes were recorded on the radar differential interferogram derived from the scenes of the ESA radar satellite Sentinel-1. The interferogram is a raster image that is combination of two radar scenes, showing the phase difference of the reflected microwave signal. This difference reflects changes occurring on the earth surface in the form of the interferometric stripes called “fringes”. They are interpreted as contour of changes in earth morphology. During the analyzed period, 3 cm variations were identified. All indications show that they were related to the seismic shock of the 29th November, which was confirmed by comparing the location of the earthquake epicenter with the registered fringes.


Author(s):  
R. Mangla ◽  
S. Kumar

A digital elevation model (DEM) is a 3D visualization of a terrain surface. It can be used in various analytical studies such as topographic feature extraction, hydrology, geomorphology and landslides analysis etc. Uttrakhand region is affected with landslides, earthquake and flash flood phenomenon. Hence this study was focused on DEM generation using Differential SAR Interferometry (DINSAR) on ALOS PALSAR dataset. Two Pass DINSAR technique involves one interferometric pair in addition with an external DEM. The external DEM was used as a reference to reduce topographic errors. The data processing steps were image co-registration, interferogram generation, interferogram flattening (Differential Interferogram), interferogram filtering, coherence map, phase unwrapping, orbital refinement and re-flattening and DEM generation. Interferogram fringes observed in forest areas were due to temporal decorrelation and the fringes in mountain regions were obtained due to topography changes (may be due to landslides in rainy season). The range of elevation in generated DEM were 132 m to 2823 m and Root Mean Square Error (RMSE) error was 36.765159 m. The generated DEM was compared with ASTER DEM and variation in height was analyzed. Atmospheric effects were not removed due to geometrical and temporal decorrelation which affect the accuracy.


2002 ◽  
Vol 48 (162) ◽  
pp. 345-356 ◽  
Author(s):  
Bernhard T. Rabus ◽  
Oliver Lang

AbstractWe investigate limitations of the one-dimensional elastic-beam model to detect grounding line and thickness of an ice shelf from a differential interferogram. Spatial limitations due to grounding-line curvature and variable ice thickness are analyzed by comparison with two-dimensional plate flexure. Temporal limitations from the tide-dependent shift of the grounding line are analyzed by superpositions of four tidal flexure profiles representing differential interferograms. (i) At scales greater than one ice thickness, seaward protrusions of the grounding line are well represented by the elastic-beam model, while landward embayments of the same scale produce significant misplacements >10% of the ice thickness. (ii) For reasonable spatial variations of shelf thickness, the elastic-beam model gives reliable estimates of grounding-line position and unfractured mean ice thickness near the grounding line. (iii) For about 20% of superpositions of four tidal flexure profiles, the resulting grounding-line misplacements exceed the physical tidal shift of the grounding line by factors >2. For differential tide levels <10% of a 1 m tide dynamics, a physical shift of the grounding line of 0.3 km per metre of tide can lever misplacements of >2 km. Examples of real interferometric profiles from West Antarctic ice shelves corroborate our results.


2001 ◽  
Vol 34 (4) ◽  
pp. 1587 ◽  
Author(s):  
I. S. PARCHARIDIS ◽  
E. LAGIOS

Nisyros Volcano located at the southeastern Aegean Sea (Greece) has recently shown (1996-97) a high seismic activity, associated with a significant deformation has determined by DGPS measurements. The determination of the overall deformation of the island was also attempted by Differential Radar Interferometry (DInSAR). The DInSAR analysis has been applied using the ERS-2 satellite data, covering the period 1996-1999. The removal of the interferometric phase related to the topography has been done using an external high resolution DEM. Two areas of the island show a good coherence, the southwestern and the eastern part. Almost two interferometric fringes were respectively recognized and evaluated. These two zones coincide with the main tectonic fractures of the island. The time separation and resolution, which consist important factors, for the extraction of the effective information and the quality of the finally produced differential interferogram, seem however that influence very slight its accuracy. The deformation outlined by the interferogram is compatible with the existing differential GPS observations.


Sign in / Sign up

Export Citation Format

Share Document