Post-Processing of Phased-Array Ultrasonic Inspection Data with Parallel Computing for Nondestructive Evaluation

2013 ◽  
Vol 33 (3) ◽  
pp. 342-351 ◽  
Author(s):  
Xuefei Guan ◽  
Jingdan Zhang ◽  
S. Kevin Zhou ◽  
El Mahjoub Rasselkorde ◽  
Waheed A. Abbasi
Author(s):  
Wei Zhang ◽  
Xinyan Wang ◽  
Xuefei Guan

Abstract This study presents a method of ultrasonic flaw identification using phased array ultrasonic inspection data. Raw data from each individual channel of the phased array ultrasonic inspection are obtained. The data trimming and de-noising are employed to retain the data within the boundary of the inspected object and remove the speckle noise components from the raw data, respectively. The resulting data are passed into a sequence of signal processing operations to identify embedded flaws. A shape-based filtering method is proposed to reduce the intensity of geometric noise components due to the non-uniform microstructures introduced in the manufacturing process. The resulting data matrices are integrated to obtain the intensity matrix of the possible flaw regions. Thresholding is applied to the intensity matrix to obtain the potential flaw regions, followed by a connected component analysis to identify the flaws. The overall method is demonstrated and validated using realistic phased array experimental data.


2022 ◽  
Vol 12 (2) ◽  
pp. 748
Author(s):  
Seong Jin Lim ◽  
Young Lae Kim ◽  
Sungjong Cho ◽  
Ik Keun Park

Pipes of various shapes constitute pipelines utilized in industrial sites. These pipes are coupled through welding, wherein complex curvatures such as a flange, an elbow, a reducer, and a branch pipe are often found. Using phased array ultrasonic testing (PAUT) to inspect weld zones with complex curvatures is faced with different challenges due to parts that are difficult to contact with probes, small-diameter pipes, spatial limitations due to adjacent pipes, nozzles, and sloped shapes. In this study, we developed a flexible PAUT probe (FPAPr) and a semi-automatic scanner that was improved to enable stable FPAPr scanning for securing its inspection data consistency and reproducibility. A mock-up test specimen was created for a flange, an elbow, a reducer, and a branch pipe. Artificial flaws were inserted into the specimen through notch and hole processing, and simulations and verification experiments were performed to verify the performance and field applicability of the FPAPr and semi-automatic scanner.


Author(s):  
Qingshan Feng ◽  
Yi-Han Lin ◽  
Fuxiang Wang ◽  
Bin Li

The spiral welded defect of steel oil transmission pipeline is one of the main causes resulting in pipeline leakage accident. Hence the failure assessment for known-size spiral welded defects is an important step to ensure the safety of defected pipeline. Lack of suitable criterion for assessing the spiral welded manufacture defects of pipeline network in China, is a difficult technology problem to be solved desirably. This paper first summarized the basic idea of preliminary failure assessment (Grade 1A of code BS 7910:2005) with some insight of our own understanding, and then applied the preliminary failure assessment to the spiral welded defects of oil pipeline, with the use of ultrasonic inspection data of Daqing-Tieling old pipeline from LingYuan to XinMiao, Northeastern China. The calculation of both fracture and plastic collapse failure for spiral welded defects indicates some detected flaws of pipeline are not safe as the internal pressure is greater than 4.5 MPa. A leakage accident of spiral welded pipeline in Western China is also assessed through fractography analyses and failure calculations. This paper concludes that the preliminary failure assessment provides useful outcome for reference in making decision of inspection, integrity assessment and repair of spiral welded pipeline, and hence is a step of fundamental importance and practical significance before more accurate data becomes available for higher grade assessment.


Author(s):  
Yaser A. Jasim ◽  
Senan Thabet ◽  
Thabit H. Thabit

<p><em>A non-destructive test method is the main method to examine most of the materials, composite materials in particular. There are too many </em><em>Non-Destructive Test (</em><em>NDT) methods to inspect the materials such as, Visual Inspection, Liquid Penetrate Inspection, Eddy-Current Inspection, Phased Array Inspection, Magnetic Particle Inspection and Ultrasonic Inspection</em><em>.</em></p><p><em>This paper aims to creat a unified methodology for engineers depending on reaserch onion to study the inspection of the composite materials.</em></p><p><em>The researchers concluded that NDT method is the most suitable method for testing any materials and the composite materials. They also recommended to choose the most suitable NDT method as every materials and composite materials have its own properties as well as the inspection methods had its own capabilities and limitations. </em></p>


2021 ◽  
Author(s):  
Randika Kosala Wathavana Vithanage ◽  
Ehsan Mohseni ◽  
Zhen Qiu ◽  
Yashar Javadi ◽  
David Lines ◽  
...  

Author(s):  
Ana Beatriz Lopez ◽  
João Santos ◽  
José Pedro Sousa ◽  
Telmo G. Santos ◽  
Luísa Quintino

2015 ◽  
Vol 818 ◽  
pp. 256-259
Author(s):  
Erika Hodúlová ◽  
Ingrid Kovaříková ◽  
Beáta Šimeková ◽  
Koloman Ulrich

The non-destructive inspection of duplex steels is a big challenge, being composed of ferrite and austenite, have some particularities. When using ultrasound, for instance, its waves propagate well in ferrite, but suffer strong attenuation, scattering and refraction in austenite. The aim of this work is to use the Phased Array ultrasonic inspection method for the thin (4 mm) duplex steel weld joint inspection. The experimental sample was made ​​of duplex steel shaped tube with an outer diameter of 44 mm and a wall thickness of 3.8 mm welded with a laser beam. The experiment was necessary to verify attenuation of duplex steel. On the base material and the weld joint were made the artificial defects, in which the adjusted sensitivity of the ultrasonic device was set.The result of the measuring was the defect echo coming from the weld root layer. The length (about 25 mm) can only be estimated due to the inaccurate constant velocity of probe motion along the surface.


Author(s):  
B. A. Graybeal ◽  
R. A. Walther ◽  
G. A. Washer

Ultrasonic inspection is currently one of the most common and reliable methods used in the inspection of hanger pins in pin-and-hanger bridge structures. Recently, a pin-and-hanger connection on a heavily traveled truck route in the Midwest showed visual indications of being deficient. Field contact ultrasonic inspections were performed on the remaining pin connections. The field inspections indicated that a number of the pins contained cracks or significant wear grooves at the pin shear planes, or both. These pins were replaced and sent to the FHWA’s Nondestructive Evaluation Validation Center for further testing in an ultrasonic immersion tank. The results of the contact and immersion tank ultrasonic studies were nearly identical. Both methods found two pins that contained transverse cracks at the level of a shear plane, with one of these cracks encompassing a majority of the pin cross section. Clearly, for the conditions found in the study, field contact ultrasonics can accurately locate defects in hanger pins.


Sign in / Sign up

Export Citation Format

Share Document