Ultrasonic Inspection of Thin Duplex Steel Welds by Phased Array

2015 ◽  
Vol 818 ◽  
pp. 256-259
Author(s):  
Erika Hodúlová ◽  
Ingrid Kovaříková ◽  
Beáta Šimeková ◽  
Koloman Ulrich

The non-destructive inspection of duplex steels is a big challenge, being composed of ferrite and austenite, have some particularities. When using ultrasound, for instance, its waves propagate well in ferrite, but suffer strong attenuation, scattering and refraction in austenite. The aim of this work is to use the Phased Array ultrasonic inspection method for the thin (4 mm) duplex steel weld joint inspection. The experimental sample was made ​​of duplex steel shaped tube with an outer diameter of 44 mm and a wall thickness of 3.8 mm welded with a laser beam. The experiment was necessary to verify attenuation of duplex steel. On the base material and the weld joint were made the artificial defects, in which the adjusted sensitivity of the ultrasonic device was set.The result of the measuring was the defect echo coming from the weld root layer. The length (about 25 mm) can only be estimated due to the inaccurate constant velocity of probe motion along the surface.

1984 ◽  
Vol 87 (793) ◽  
pp. 1341-1346
Author(s):  
Tadao MORI ◽  
Hideo KASHIWAYA ◽  
Ichiro KOMURA ◽  
Satoshi NAGAI ◽  
Kuniharu UCHIDA

2015 ◽  
Vol 752-753 ◽  
pp. 584-587 ◽  
Author(s):  
Erika Hodúlová ◽  
Ingrid Kovaříková ◽  
Beáta Šimeková ◽  
Koloman Ulrich

The use of non-destructive inspection techniques in conventional stainless steels is well established. However the non-destructive inspection of duplex and superduplex steels is a big challenge as those steels, being composed of ferrite and austenite, have some particularities. When using ultrasound, for instance, its waves propagate well in ferrite, but suffer strong attenuation, scattering and refraction in austenite. An extended research is proposed on the inspection of duplex steels, especially in welded joints, which presents the worst problems in those steels (incorrect ferrite/austenite balance and precipitation of deleterious phases). The aim of this work was to use the TOFD ultrasonic inspection method for the thin duplex steel weld joint inspection.


2013 ◽  
Vol 772 ◽  
pp. 89-93 ◽  
Author(s):  
Jozef Bárta ◽  
Tatiana Vrtochová ◽  
Peter Krampoťák

Procedures for welding duplex stainless steel conventional arc welding methods were studied by several authors and nowadays and recently they are well handled. Todays practice requires application of processes providing excellent weld joint quality, quick production and possibility of automation. Therefore the application of laser beam welding has a great potential of application. This research paper describes weldability of DSS 2205 by laser beam. The main factor examined in the process of welding duplex steel is the shielding gas and his effect on weld joint properties. Welding was performed with gaseous CO2 laser machine Ferranti Photonics AF 8 having 8 kW max. output power and wave length 10.6 µm. Microstructure of weld joint specimens was analysed in order to observe the phase composition ratio. Samples are welded with same process parameters except of shielding gas. Helium and nitrogen were applied as a shielding gas to examine their influence in comparison to weld joints welded without shielding gas. Since the nitrogen promotes the austenite formation, its application brought the best results having almost same phase composition as base material.


Author(s):  
J Downing ◽  
A Hook

Two steel substrate test panels were developed to represent common plate thicknesses found on naval vessels and scanned using the Babcock developed ultrasonic technique. One sample comprised of a series of slotted surface breaking flaws of varying widths and through thicknesses to represent fracturing/cracking. The inspection method detected simulated cracking to a depth of 2mm and 0.5mm in width. The second sample included numerous loss of wall thickness areas of varying diameters and through thicknesses, with the smallest detectable loss of wall thickness being 0.1mm at a 15mm diameter. After proving confidence in detection, there was a need to characterise flaws to provide support and ascertain a repair action. Samples were produced that were subjected to either impact or heat exposure to induce realistic representative damage. The practical ultrasonic method was successfully used to independently characterise between the samples, with induced de-laminations caused by blisters, and multi layered matrix cracking caused by varying levels of projectile impacts, due to their unique morphology.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 242
Author(s):  
YoungLae Kim ◽  
Sungjong Cho ◽  
Ik Keun Park

The anisotropy and inhomogeneity exhibited by austenitic steel in welds poses a challenge to nondestructive testing employing ultrasonic waves, which is predominantly utilized for the inspection of welds in power plants. In this study, we assess the reliability of phased array ultrasonic testing (PAUT) by analyzing the flaw detection sensitivity of ultrasonic beams in anisotropic welds, based on the inspection conditions. First, we simulated the sectorial scan technique, frequently employed for the inspection of actual welds, while taking into account the ultrasonic wave mode, frequency, and shape and position of a flaw. Subsequently, we analyzed the flaw sensitivity by comparing A-scan signals and S-scan results. The sensitivity analysis results confirmed the detection of all flaws by considering at least two inspection methods based on the shape and position of the flaw. Furthermore, we verified our model by performing an experiment under the same conditions as the simulation and found that the results were in agreement. Hence, we find that the simulation modeling technique proposed in this study can be utilized to develop suitable inspection conditions, according to the flaw characteristics or inspection environment.


Author(s):  
Petrônio Zumpano ◽  
Alexandre G. Garmbis ◽  
Eduardo V. Oazen ◽  
Luis Guilherme T. S. Leite ◽  
Rafael N. Silva

This paper describes different alternatives to be adopted to assess the integrity of weld overlays of flexible joints and lined pipes in offshore pipeline and riser projects. Protective layers are adopted as an interesting alternative to full thickness corrosion resistant alloys due to the possibility to adopt carbon steel as base material in order to reduce overall material costs. UNS N06625 (alloy 625) is generally selected for internal layers, such as weld overlay steels, lined pipes or clad pipes because of its sulfide stress cracking (SSC) resistance and outstanding weldability. However, unless the long-term integrity of the cladding or overlay as a protective layer can be demonstrated under the intended service conditions, the base material shall also be resistant against sulfide stress corrosion cracking. Due to low resistance of carbon steel to corrosion fatigue in the presence of contaminants in fluid content, the rupture of thickness of CRA (Corrosion Resistant Alloy) layer becomes a failure mode. An Engineering Critical Assessment (ECA) shall be performed in order to assess if circumferential planar flaws in weld overlay regions will not propagate through the CRA layer, thus exposing the base material, when submitted to critical cyclic loads during the service life. Such analysis would involve fatigue crack growth simulation and surface interaction of full circumferential embedded defects to determine the maximum weld overlay pass height to be limited by machining. This limited height of machined layers should guarantee that a full circumferential flaw will withstand the operational fatigue life. However, this is a very time consuming manufacturing process and would implicate additional concerns for long extensions due to out of straightness and out of roundness. Alternatively, the ECA results may be used to determine the flaw acceptance criteria and required probability of detection of volumetric non-destructive testing. Recent developments in ultrasonic inspection were successfully adopted and represent a better solution for alloy 625 weld overlay in terms of project scheduling and manufacturing costs. Radiographic testing may also be used provided it meets the required sensitivity, in terms of image quality indicators (IQI). Anyway, validation tests shall be performed to demonstrate adequate reliability to detect the minimum required flaw height.


2010 ◽  
Author(s):  
G. D. Connolly ◽  
M. J. S. Lowe ◽  
S. I. Rokhlin ◽  
J. A. G. Temple ◽  
Donald O. Thompson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document