Estimation of Crack Depth in Concrete Using Diffuse Ultrasound: Validation in Cracked Concrete Beams

Author(s):  
Chi-Won In ◽  
Kevin Arne ◽  
Jin-Yeon Kim ◽  
Kimberly E. Kurtis ◽  
Laurence J. Jacobs
Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 284 ◽  
Author(s):  
Tobias Danner ◽  
Ulla Hjorth Jakobsen ◽  
Mette Rica Geiker

Self-healing of cracked concrete beams after 25 years of marine exposure was investigated. The extent of self-healing and the chemical and mineralogical composition of the self-healing products were characterized, and mechanisms proposed. There was no effect of varying silica fume (4%, 12%) and fly ash content (0%, 20%) on the mineralogy and chemistry of the self-healing products and the extent of self-healing. Crack widths smaller than 0.2 mm appeared closed. With increasing crack depth, a sequence of changing mineralogy of self-healing products was found. In the outer part of the crack (0–5 mm depth from the exterior surface) only calcite was precipitated followed by brucite layers from 5–30 mm depth. The brucite was occasionally intermixed with calcite. At crack depths >30 mm only ettringite was observed. It is hypothesized that the mineralogical sequence observed with increasing crack depth occurs due to an increasing pH of the solution inside the crack with increased crack depth. Self-healing of cracks in marine exposed concrete is proposed to happen through precipitation of ions from seawater partly in reaction with ions from the cement paste in the outer part of the crack and through dissolution and reprecipitation of ettringite at larger crack depths.


2019 ◽  
Vol 271 ◽  
pp. 07009
Author(s):  
Changkyu Kim ◽  
Reece Goldsberry ◽  
Ahmad Ivan Karayan ◽  
Jose Milla ◽  
Marwa Hassan ◽  
...  

We present the preparation and inhibition behavior of rebar in the presence of calcium nitrate (CN)-containing microcapsules with concentrations of 0.50, 2.00, and 5.00 wt.% in concrete. From both open circuit potential (OCP) and electrochemical impedance spectroscopy spectra, it was found that an addition of microcapsules containing CN corrosion inhibitor into concrete beams successfully repassivated or maintained the passivity of the rebar when the concrete was cracked. This corrosion inhibitor repassivated the rebar by forming a passive layer on the rebar surface under the crack. This repassivation process was evident by an increase of OCP values to more positive values or by stable OCP values at around -100 mV vs SCE. An increase in phase angle after corrosion activation for the sample with 2.00 wt.% microcapsule clearly showed this repassivation process. The optimum concentration for maintaining the passivity on rebar in the cracked concrete was found to be 5.00 wt.%.


2011 ◽  
Vol 39 (4) ◽  
pp. 465-498 ◽  
Author(s):  
Umesh Kumar Pandey ◽  
Gurmail S. Benipal

Sign in / Sign up

Export Citation Format

Share Document