Transformation of Chicken Feather Keratin and Pomelo Peel Pectin into Biodegradable Composite Film

2017 ◽  
Vol 26 (5) ◽  
pp. 2120-2129 ◽  
Author(s):  
Pulak Das ◽  
Purba Prasad Borah ◽  
Laxmikant S. Badwaik
2021 ◽  
Author(s):  
Hanmin Wang ◽  
Tong-Qi Yuan ◽  
Guoyong Song ◽  
Runcang Sun

The excessive use of petroleum-based non-biodegradable plastic products has resulted in severe environmental pollution and ecological problems, which has stimulated the development of biodegradable and renewable alternative materials. Lignin, as...


2016 ◽  
Vol 8 (2) ◽  
pp. 123-130
Author(s):  
FB Quader ◽  
RA Khan ◽  
MA Islam ◽  
S Saha ◽  
KN Sharmin

Green technology like biodegradable films using natural polymer is an obvious need of today. Attempt of this experiment was aimed at development and characterization of a biodegradable colored film based on starch and chitosan by using Acacia catechu. Chitosan reinforced starch based biodegradable composite film was prepared by casting. The chitosan content in the films was varied from 20-80 % (w/w). Tensile strength (TS) was improved significantly with the addition of chitosan but the elongation at break (EB %) of the composite decreased. With the addition of the Acacia catechu, tensile strength of the composites improved more. The acacia content of the film was varied from 0.05-0.2(w/w). The good thermal stability of this prepared film was confirmed by thermo-gravimetric analysis. Structural characterization was done by Fourier transform infrared radiation spectroscopy. Surface morphology of the composite film was examined by scanning electron microscope (SEM) which suggested sufficient homogenization of starch, chitosan and Acacia catechu. Water uptake was found lower for final composites in the comparison to starch/chitosan and chitosan film. The satisfactory rate of degradation in the soil is expected that the final composite film within less than 6 months. The developed films intended to use as the alternative of synthetic non biodegradable colored packaging films.J. Environ. Sci. & Natural Resources, 8(2): 123-130 2015


2011 ◽  
Vol 399-401 ◽  
pp. 381-384
Author(s):  
Chun Guang Li ◽  
Bin Guo Zheng ◽  
Wei Gong Peng ◽  
Wei Tian ◽  
Rui Zhang

The biodegradable composite films were prepared from bagasse microcrystalline cellulose as filler and poly(vinyl alcohol)(PVA) as polymeric matrix. The crystallinity, the tensile properties and the thermal properties of the composites were tested. Bagasse microcrystalline cellulose was distributed in PVA films as the crystalline state. The results show that the tensile properties and thermal properties were improved with the addition of bagasse microcrystalline cellulose. When bagasse microcrystalline cellulose mass fraction was 5%, both temperature of initial decomposition and maximum weight loss rate of composite film were raised by 11.71°C and 36.86°C, and the tensile strength increased by 17.88%, and the elongation at break increased by 36.62% compared to those of pure PVA.


Sign in / Sign up

Export Citation Format

Share Document