Solubility Data of Diazepam in Binary and Ternary Mixtures of PEGs 200 and 400 with N-Methyl Pyrrolidone and Water at 298.2 K: Experimental Data and Modeling

2013 ◽  
Vol 42 (12) ◽  
pp. 2281-2295 ◽  
Author(s):  
Shahla Soltanpour ◽  
Vahid Panahi-Azar ◽  
Azade Taheri ◽  
Zahra Bastami ◽  
Abolghasem Jouyban
2008 ◽  
Vol 59 (5) ◽  
Author(s):  
Viorel Feroiu ◽  
Dan Geana ◽  
Catinca Secuianu

Vapour � liquid equilibrium, thermodynamic and volumetric properties were predicted for three pure hydrofluorocarbons: difluoromethane (R32), pentafluoroethane (R125) and 1,1,1,2 � tetrafluoroethane (R134a) as well as for binary and ternary mixtures of these refrigerants. Three cubic equations of state GEOS3C, SRK (Soave � Redlich � Kwong) and PR (Peng � Robinson) were used. A wide comparison with literature experimental data was made. For the refrigerant mixtures, classical van der Waals mixing rules without interaction parameters were used. The GEOS3C equation, with three parameters estimated by matching several points on the saturation curve (vapor pressure and corresponding liquid volumes), compares favorably to other equations in literature, being simple enough for applications.


2005 ◽  
Vol 50 (6) ◽  
pp. 1814-1817 ◽  
Author(s):  
Fathollah Gozalpour ◽  
Ali Danesh ◽  
Adrian C. Todd ◽  
Bahman Tohidi

2019 ◽  
pp. 21-27
Author(s):  
Mauricio García-Martínez ◽  
Benjamín Ibarra-Tandi ◽  
Daniel Porfirio Luis-Jiménez ◽  
Jorge López-Lemus

The surface tension of some binary and ternary mixtures was calculated by means of molecular dynamics simulations in a canonical set. The analyzed mixtures were oxygen-argon, nitrogen-argon and oxygen-nitrogen-argon. The force field for argon was recalculated in order to reproduce the experimental surface tension. The corresponding force fields for O2 and N2 were taken from a previous work [Mol. Simul. 45 (2019) 958-966], where it was shown that such force fields reproduce the experimental surface tension curves, as pure fluids. The nitrogen-argon surface tension was calculated for several mole fractions of argon. The obtained curve was compared with those experimental data and a good agreement was found. The standard Lorentz-Berthelot combining rules were employed. For the oxygen-argon mixture it was necessary to modify the cross term of the combining rules in order to reproduce theoretical and experimental data. The surface tension of the ternary mixture was also estimated varying the mole fraction of argon at a certain concentration of oxygen and nitrogen, previously adjusted. Several temperatures were used in order to show a tendency mostly at relatively low temperatures. After comparing the available experimental data, which are scarce, a good agreement was observed.


2021 ◽  
Author(s):  
Seyedeh Hoda Mozaffari

Thermodiffusion phenomenon in fluid mixtures has been investigated by several scientists in theoretical as well as experimental fields for decades. Nevertheless, due to shortcomings of both methods, interest in searching for alternative approaches to shed some light on molecular scale of the phenomenon has spurred. The objective of this thesis is to develop an accurate molecular dynamics (MD) algorithm that can predict thermodiffusive separation in binary and ternary fluid mixtures. More importantly, the proposed algorithm should be computationally efficient in order to be suitable for integration into multi-scale computational models to simulate thermodiffusion in a large system such as an oil reservoir. In developing such an effective and efficient computational tool, this thesis introduces a modified heat exchange algorithms, wherein, a new mechanism is introduced to rescale velocities which curbs the energy loss in the system and at the same time minimizes the computational time. The performance of the new algorithm in studying Soret effect for binary and ternary mixtures has been compared with other non-equilibrium molecular dynamics (NEMD) models including regular heat exchange algorithm (HEX) and reverse non-equilibrium molecular dynamics (RNEMD). Different types of binary mixtures were studied including one equimolar mixture of argon (Ar)-krypton (Kr) above its triple point, non-equimolar normal alkane mixtures of hexane (nC6)-decane (nC10) as well as hexane (nC6)-dodecane (nC12) for six compositions, three non-equimolar mixtures of pentane (nC5) decane (nC10) at atmospheric temperature and pressure. Additionally, the new algorithm was validated for different ternary mixtures including ternary normal alkanes methane (nC1)-butane (nC4)- dodecane (nC12) for three compositions, and one composition of different types of alkane mixture of 1,2,3,4-tetrahydronaphthalene (THN)-dodecane (nC12)-sobutylbenzene (IBB). The new algorithm demonstrates a significant improvement in reducing the energy loss by nearly 32%. Additionally, the new algorithm is about 7-9% more computationally efficient than the regular HEX for medium and large systems. In terms of direction of thermodiffusive segregations in binary mixtures, in agreement with the experimental data, the new algorithm shows that the heavier component moves towards the cold region whereas the lighter component accumulates near the hot zone. Additionally, the strength of segregation process diminishes as the concentration of heavy component in the mixture increases. The new algorithm improved the prediction of thermodiffusion factor in binary mixtures by 24% in binary mixtures. With respect to the ternary mixtures, similarly to binary mixtures the heaviest and lightest component in the mixture move towards, cold and hot zones, respectively. While the intermediate component shows the least tendency to segregate. In terms of the strength of Soret effect, the new algorithm is about 17% more accurate than the regular HEX algorithm with respect to experimental data.


2021 ◽  
Author(s):  
Seyedeh Hoda Mozaffari

Thermodiffusion phenomenon in fluid mixtures has been investigated by several scientists in theoretical as well as experimental fields for decades. Nevertheless, due to shortcomings of both methods, interest in searching for alternative approaches to shed some light on molecular scale of the phenomenon has spurred. The objective of this thesis is to develop an accurate molecular dynamics (MD) algorithm that can predict thermodiffusive separation in binary and ternary fluid mixtures. More importantly, the proposed algorithm should be computationally efficient in order to be suitable for integration into multi-scale computational models to simulate thermodiffusion in a large system such as an oil reservoir. In developing such an effective and efficient computational tool, this thesis introduces a modified heat exchange algorithms, wherein, a new mechanism is introduced to rescale velocities which curbs the energy loss in the system and at the same time minimizes the computational time. The performance of the new algorithm in studying Soret effect for binary and ternary mixtures has been compared with other non-equilibrium molecular dynamics (NEMD) models including regular heat exchange algorithm (HEX) and reverse non-equilibrium molecular dynamics (RNEMD). Different types of binary mixtures were studied including one equimolar mixture of argon (Ar)-krypton (Kr) above its triple point, non-equimolar normal alkane mixtures of hexane (nC6)-decane (nC10) as well as hexane (nC6)-dodecane (nC12) for six compositions, three non-equimolar mixtures of pentane (nC5) decane (nC10) at atmospheric temperature and pressure. Additionally, the new algorithm was validated for different ternary mixtures including ternary normal alkanes methane (nC1)-butane (nC4)- dodecane (nC12) for three compositions, and one composition of different types of alkane mixture of 1,2,3,4-tetrahydronaphthalene (THN)-dodecane (nC12)-sobutylbenzene (IBB). The new algorithm demonstrates a significant improvement in reducing the energy loss by nearly 32%. Additionally, the new algorithm is about 7-9% more computationally efficient than the regular HEX for medium and large systems. In terms of direction of thermodiffusive segregations in binary mixtures, in agreement with the experimental data, the new algorithm shows that the heavier component moves towards the cold region whereas the lighter component accumulates near the hot zone. Additionally, the strength of segregation process diminishes as the concentration of heavy component in the mixture increases. The new algorithm improved the prediction of thermodiffusion factor in binary mixtures by 24% in binary mixtures. With respect to the ternary mixtures, similarly to binary mixtures the heaviest and lightest component in the mixture move towards, cold and hot zones, respectively. While the intermediate component shows the least tendency to segregate. In terms of the strength of Soret effect, the new algorithm is about 17% more accurate than the regular HEX algorithm with respect to experimental data.


2021 ◽  
Author(s):  
Daniel Bellaire ◽  
Hendrik Kiepfer ◽  
Kerstin Münnemann ◽  
Hans Hasse

Recently, Guevara-Carrion et al. published a comprehensive molecular dynamics (MD) study on the thermodynamic properties of binary mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride which also includes results on self-diffusion coefficients. However, for the mixtures acetone/cyclohexane, acetone/ethanol, acetone/toluene, cyclohexane/ethanol, and toluene/ethanol, no experimental data on self-diffusion coefficients were available for comparison. Therefore, in the present work, self-diffusion coefficients in these mixtures were measured by 1H NMR spectroscopy using pulsed field gradients (PFGs) at 298.15 K and ambient pressure. The experimental data were compared to the simulations of Guevara-Carrion et al. Good agreement was observed for all mixtures that do not contain ethanol, whereas, for ethanol-containing mixtures, the deviations were larger. This finding is attributed to deficiencies of the molecular model in describing the hydrogen-bonding of ethanol. Furthermore, self-diffusion data for the ternary mixture acetone/toluene/cyclohexane were measured and compared to molecular simulation data from the present work. Good agreement was observed.


1981 ◽  
Vol 46 (2) ◽  
pp. 303-328 ◽  
Author(s):  
Pavol Škubla

The derived equations for correlation of viscosity of binary and ternary mixtures were tested and compared with those of McAllister, Chandramouli and Laddha. Testing on a large number of experimental data revealed that the equations for correlation of viscosity of binary mixtures are approximately as accurate as the equation of McAllister. On adding another coefficient, the relative deviations are lowered by 26-40%. Equations for correlation of viscosity of ternary mixtures are about as accurate as the equation of Chandramouli and Laddha. Analysis of viscosity curves of binary mixtures revealed a correlation between their form and the chemical nature of the components of the mixture.


Sign in / Sign up

Export Citation Format

Share Document